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I. INTRODUCTION

Transformers [1] are a type of deep-learning model that
leverage attention mechanisms for vision, language and time-
series data processing tasks. This means that long range data
relations help identify seizure patterns across multiple time
intervals. Transformers allow for parallel processing, which
leads to high efficiency, crucial for real-time applications
such as seizure detection. They are adaptable to EEG Data,
which provides versatility for complex pattern recognition
in spatial and temporal aspects. They can also incorporate
transfer learning which means fine-tuning pre-trained models
on EEG data that counters less availability of specialized data.
They provide interpretability with tools such as attention maps
and this leads to clinical trust and acceptance.

II. RELATED WORKS

Traditional techniques for seizure detection using EEG data
include support vector machine, random forest, and logistic
regression. Support Vector Machine [2] (SVM) is a supervised
machine learning algorithm used for classification and regres-
sion tasks by finding the optimal hyperplane that maximizes
the margin between data points of different classes. Random
Forest [3] is an ensemble machine learning algorithm that
combines multiple decision trees to improve predictive accu-
racy and reduce over-fitting in classification and regression
tasks. Logistic Regression [4] is a statistical model used
in machine learning for binary classification tasks, where it
estimates the probability of an input belonging to a particular
class.

Signal processing techniques for seizure detection using
EEG data include wavelet transforms, spectral analysis, and
time-domain feature extraction. Wavelet transforms [5] are
mathematical tools used for signal and image processing,
enabling both time and frequency domain analysis by decom-
posing signals into different scales or resolutions. Spectral
analysis [6] is a technique for studying the frequency com-
ponents of a signal, allowing the identification of patterns and
characteristics in time series data, audio signals, or images
by examining their frequency domain representations. Time
domain feature extraction [7] involves analyzing the raw
temporal characteristics of data to extract relevant features,
such as mean, variance, or time-domain statistics, for various

applications, including signal processing and machine learn-
ing.

Finally, deep learning-based methods involve networks such
as long short-term memory and gated recurrent units that
use feature extraction for temporal data. Long Short-Term
Memory (LSTM) [8] is a type of recurrent neural network
(RNN) architecture designed to capture and remember long-
range dependencies in sequential data, making it well-suited
for tasks like natural language processing, speech recognition,
and time series analysis. Gated Recurrent Unit (GRU) [9] is
a variant of recurrent neural network (RNN) that simplifies
the architecture of LSTM by using fewer gates, making it
computationally more efficient while still being effective for
sequential data modeling

Transformer models leverage attention mechanisms and
there have been several published studies that utilize these
models for the task of seizure detection. [10] combines CNN
and Transformer, achieving high sensitivity and low false rates.
[11] uses short-time Fourier transform and an attention-driven
three transformer tower significantly improves EEG signal
analysis for accurate seizure prediction. [12] combines Fourier
transform and deep learning promising efficient automated
EEG-based epilepsy screening in clinical settings. [13] uses
a a hybrid deep learning model leveraging graph neural
networks and transformers. It improves automated epileptic
EEG classification by capturing inter-channel relationships and
heterogeneous associations.

III. PROBLEM DEFINITION

To develop a transformer-based model for accurate and real-
time seizure identification using electroencephalogram (EEG)
data, with a focus on improving both sensitivity and specificity
to minimize false positives and false negatives, ultimately
enhancing the clinical utility of seizure detection systems for
individuals with epilepsy.

IV. ALGORITHMS USED

A. Unsupervised Multivariate Time-Series Transformers

Supervised learning methods require expert labels indicat-
ing EEG segments with seizures and obtaining large and
consistently-labeled EEG datasets is a difficult task. Addi-
tionally, most EEG datasets are severely imbalanced , thus



Fig. 1. An auto-encoder consisting of a transformer encoder-decoder pair, designed for multivariate time-series data such as EEG.

causing overfitting. Unsupervised learning is a less explored
method for the task of seizure detection. We reformulated the
supervised classification to unsupervised anomaly detection by
using an auto-encoder.

An auto-encoder [14] consists of a pair of encoder and
decoder models, which are jointly trained and optimized. The
encoder goes from a high dimensional input space to a low
dimensional latent space, while the decoder is vice-versa.
Generally, auto-encoders are trained on reconstruction tasks
with the objective of reducing the reconstruction error. They
have lower reconstruction error for testing when test data is
similar to training data. Anomalous data is supposed to have
higher error, and thresholding on the normalized absolute error
works for anomaly detection. Thus, we used an auto-encoder
to create a model that can be trained using only non-seizure
data and will be able to predict seizures as anomalies in
the test data. Fig. 1 depicts an auto-encoder consisting of
a transformer encoder-decoder pair, designed for multivariate
time-series data such as EEG.

B. Hybrid Visual Transformer & Data Uncertainity Learning

Electrical activity generated by the brain is miniscule so
scalp recorded electrical activity consists of a mix of genuine
brain signals combined with lots of noise - termed artifact -
generated by other parts of the body, such as heart activity,
eye movements and blinks, other facial muscle movements,
etc. Data uncertainty learning models each EEG sample as a
Gaussian or Laplacian distribution to mitigate noise interfer-
ence and enhance robustness.

Hybrid visual transformer architecture [15] enhances the
processing capability of localized features in the transformer
using convolutional neural networks (CNNs). Our model con-
verts raw EEG into a matrix like visual representation. The
CNN helps in extracting low-level visual features and patterns,
which are then combined with the high-level representations
obtained from the transformer. Thus, this fusion leverages
the strengths of both approaches: CNNs for spatial feature
extraction and Transformers for capturing global dependen-
cies and contextual information. It is particularly useful in
seizure detection from EEG data where capturing long-range
dependencies is crucial.

V. THE DATASET - CHB-MIT

Collected at the Children’s Hospital Boston, the CHB-
MIT database [16] consists of EEG recordings from pediatric
subjects with intractable seizures. Subjects were monitored
after withdrawal of anti-seizure medication to characterize
seizures and to assess candidacy for surgical intervention.
Hardware limitations caused gaps in files, during which no
signals were recorded. In most cases, the gaps are 10 seconds
or less. To protect the privacy of the subjects, all protected
health information (PHI) in the original files has been replaced
with surrogate information. Out of total 23 cases 17 contain
exactly one hour of digitized EEG signals, one has two hours
data, while five have 4 hours long data. All cases have 23
channel EEG sampled at 256 samples per second with 16-bit
resolution. The onsets and ends of 182 seizures are annotated.

Exploratory data analysis was performed on the dataset. Fig.
2 depicts the distribution of records with and without seizures
present in the dataset for each of the 23 cases. Fig. 3 shows the
segregation of the patients according to their age and gender.
The three age groups considered were 0 - 6 years, 7 - 15 years
and 16 - 22 years.

Fig. 2. The distribution of records with and without seizures present in the
dataset for each of the 23 cases.



TABLE I
COMPARISON OF THE RESULTS OBTAINED USING THE 4 CHANNEL AND 24 CHANNEL METHODS

Channels Accuracy Precision Recall Comments
With data 24 0.5 0.999 0.005 Predicted all signals as non-seizure
Leakage 4 0.941 0.996 0.904 High accuracy with only 4 channels data

Without data 24 0.873 0.961 0.812 Predicted both seizure and non-seizure cases
Leakage 4 0.812 0.965 0.785 Lower performance than 24 channel data

Fig. 3. The segregation of the patients according to their age and gender.

VI. EXPERIMENT 1

A. Hypothesis

The CHB data by itself is larger than 40 GB and its size is
further increased by preprocessing. Large amount of training
data consumes a lot of time & resources. [17] has a compact
transformer which uses raw data from four channels for real-
time EEG seizure detection giving low power usage, minimal
latency, and low false positives. We hypothesize that we can
use 4 out of 23 channels to reduce the amount of training data
required while getting an accurate prediction.

B. Data Preprocessing

The training data consisted of non-seizure data while the test
data contained both seizure and non-seizure. To prevent data
leakage, the train and test data were collected from different
subsets of individuals. A band-pass Filter was applied to
remove the powerline noise at 60 Hz. Data was normalized to
have zero-mean and unit-variance. A sliding window was used
to create small segments of EEG data. Partially overlapping
windows were used, improving temporal localization, but
causing data-size doubling.

C. Model Training

[18] uses an unsupervised model for EEG seizure iden-
tification, offering cost-effective and early epilepsy detection
without the need for manual labeling or feature extraction. We
trained this model on a smaller subset of channels (4 out of
23) F7-T7, T7-P7, F8-T8 and T8-P8 channels chosen due to
ease in data collection from these locations. These channels
correspond to region behind ears and can be captured by
wearable devices like headphones.

D. Results

Table I compares the results obtained using the 4 channel
and 24 channel methods. We also observe that in case of
training and testing on the same subset of people, overfitting
& data leakage occurs, causing low reconstruction error for
of which the model performs poorly. Reducing number of
channels causes a decrease in performance but useful for
experimentation using lesser computation. Using 4 channels,
rather than 24 allows us to train with only 17% of data and
gives comparable performance.

VII. EXPERIMENT 2

A. Hypothesis

We hypothesize that EEG data of seizure activity is corre-
lated with gender and age. This is hypothesis is based on the
studies [19] and [20] that describe differences in EEG activity
in different genders and age groups. Thus, if the model is
trained on female data, it should perform better on females
than males. Additionally, if the model is trained on patients
in one age group, it should perform better on patients of that
age group as compared to those much older or younger.

B. Data Preprocessing

We preprocessed the data by applying a 60Hz high pass
filter to remove instrument noise. We resampled non-seizure
records for maintaining class balance and used 1:5 as the
cap. 17 out of 23 channels chosen as these were common
in all patients had. Sampling rate was fixed to 256 and sample
length was 5 seconds, so final data shape was 17x1280. We
performed training on all patients together instead of patient-
wise to avoid overfitting. We implemented a patient-wise test-
train split instead of a record-wise one to avoid data leakage.

C. Model Training

[21] uses a Hybrid Vision Transformer along with data
uncertainty learning for seizure detection in EEG data. The
patients were divided into three age groups, 0-6 years, 7-15
years and 16-22 years, based on brain development milestones.
They were also divided based on gender. The vision trans-
former model was trained on females in the 7-15-year age
group, with one patient held out for testing purposes.Table II
depicts the training set for the experiment.



TABLE II
TRAINING SET

Patient Age Gender
3 14 Female
5 7 Female
7 14.5 Female
9 10 Female

11 12 Female
14 9 Female
16 7 Female
17 12 Female
22 9 Female

D. Results

The first test performed was on the 11-year-old female and
the 11-year-old male. The second test performed was on 2
females each in the lower and upper age group. Table III
shows that the model trained on females of the 7-15 age group,
performs better on an 11-year-old female as compared to an
11-year-old male.Table IV shows that the model also tests
better on the 11-year-old female as compared to females in
other age groups. In general, older females give better results
than babies which can be attributed to their pre-developmental
brains. We conclude from our observations that EEG data is
correlated with gender and age.

TABLE III
GENDER-BASED TEST

Patient Age Gender Loss Accuracy Precision Recall
1 11 Female 0.1805 0.9242 0.5682 0.9615
2 11 Male 0.2047 0.8971 0.5588 0.76

TABLE IV
AGE-BASED TEST

Patient Age Gender Loss Accuracy Precision Recall
1 11 Female 0.1805 0.9242 0.5682 0.9615
18 18 Female 0.3540 0.8439 0.1270 0.6667
19 19 Female 0.1981 0.9456 0.6735 1
6 1.5 Female 0.6091 0.7698 0.0476 0.1
12 2 Female 0.5291 0.8311 0 0

VIII. COMPARATIVE DISCUSSION

We had initially planned on comparing both methods but
can’t draw a fair comparison because of different amounts of
data used to train.

A. The time-series method

• Unsupervised Learning: does not require seizure data to
train, can be trained using normal EEG and can identify
seizure abnormalities during inference.

• Heavy to train: had to implement channel reduction and
reduce number of patients.

• Directly passes time-series data through the architecture.

B. The vision method

• Supervised Learning: requires similar amounts of labelled
EEG and non-EEG data – class balancing implemented.

• Light to train: Training time was low but faced problems
with overfitting.

• Uses CNNs on matrix representation of time series data.

IX. FUTURE WORK

In the future, we could try out the 4-channel method
for different model architectures and analyse the drop in
accuracy vs decrease in data requirements. The results of the
second experiment can be used for tasks like synthetic data
generation by keeping in mind the age and gender of the target
group or ensuring even distribution of data across age groups
and genders. Additionally, there weren’t enough patients to
do extensive tests and holding out more patients from the
training set severely impacted training performance and led
to overfitting. We hope to use synthetic data or new datasets
to do more extensive testing in the future.

X. CONCLUSION

We implemented two methods for seizure detection us-
ing EEG data, an unsupervised method using a time-series
transformer, and a supervised method using a hybrid vision
transformer and involving data uncertainty learning. For the
time-series method, we implemented an additional channel
reduction technique by using 4 instead of 23 channels. For
the vision method, we tested for age and gender correlation
in the prediction of the model. Table V summarizes some of
the problems faced by us and the solutions we implemented.

TABLE V
PROBLEMS FACED AND THEIR RESOLUTION

Problem Solution
Noise in EEG data Band-pass filtering

Data leakage Patient-wise test-train split
Large data size Specific channel selection

Overfitting Increasing training data & Class balancing
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