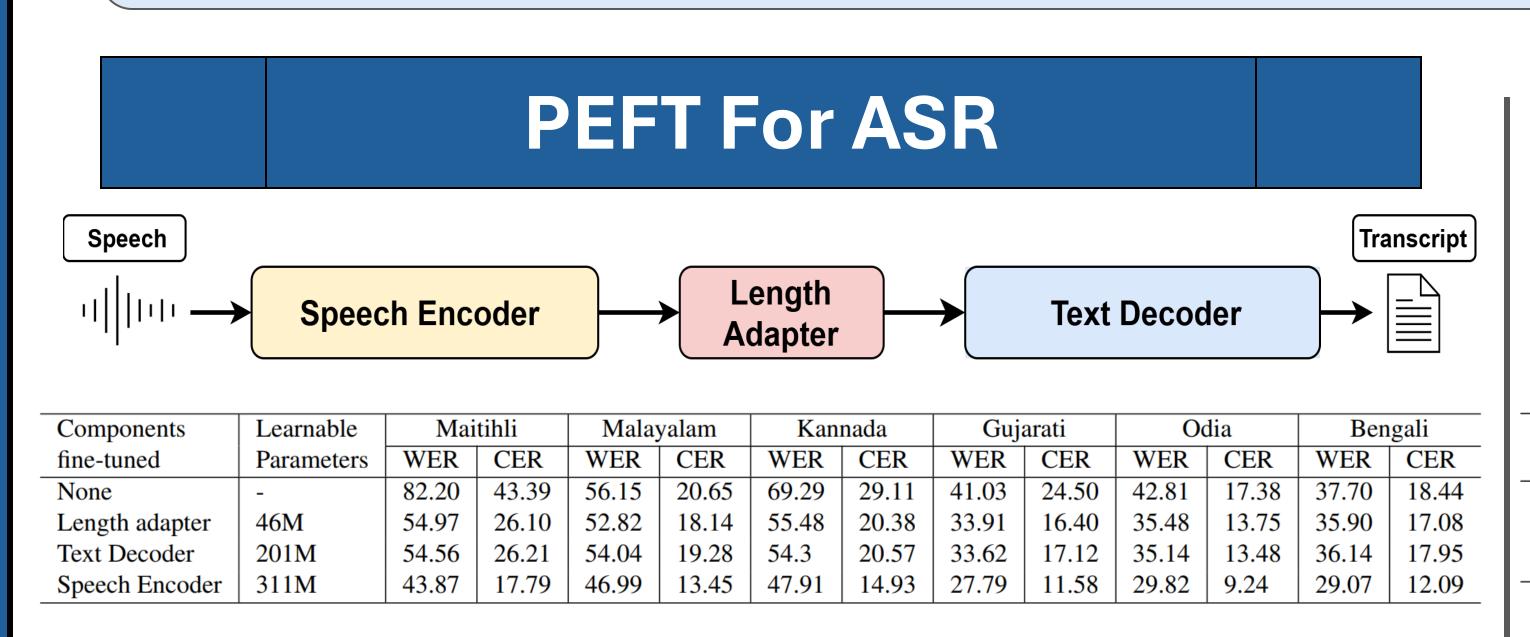
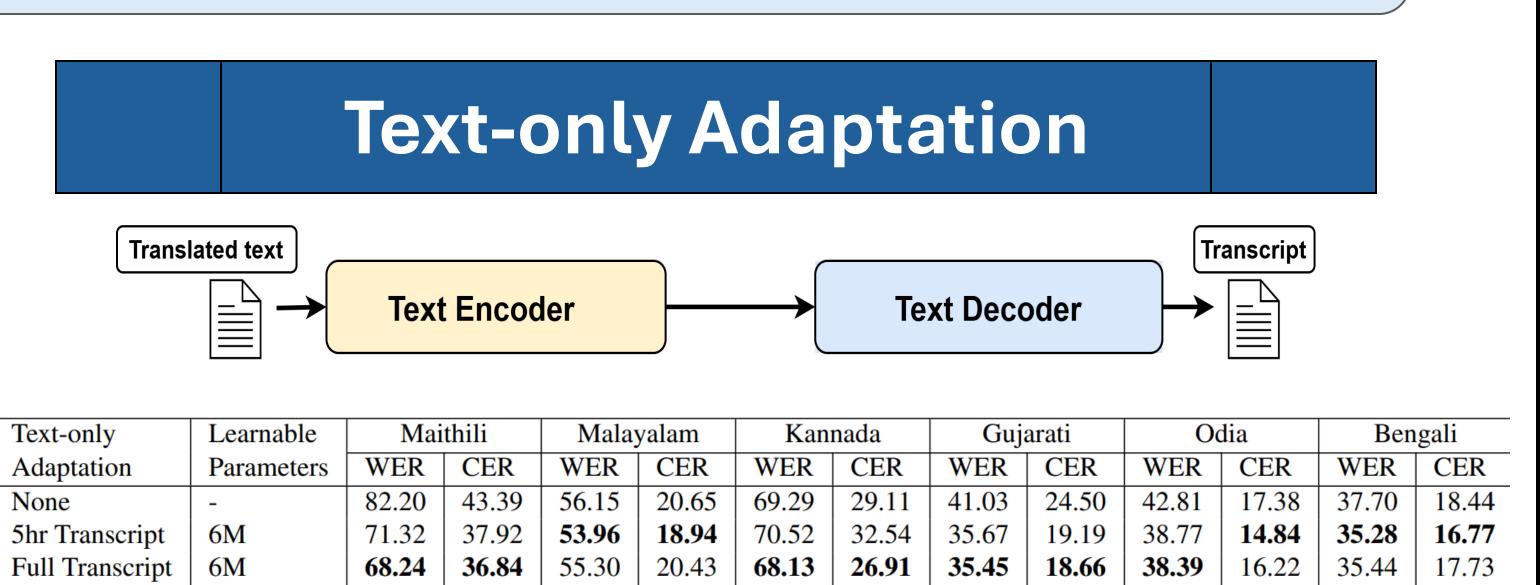


Parameter-efficient Adaptation of Multilingual Multimodal Models for Low-resource ASR

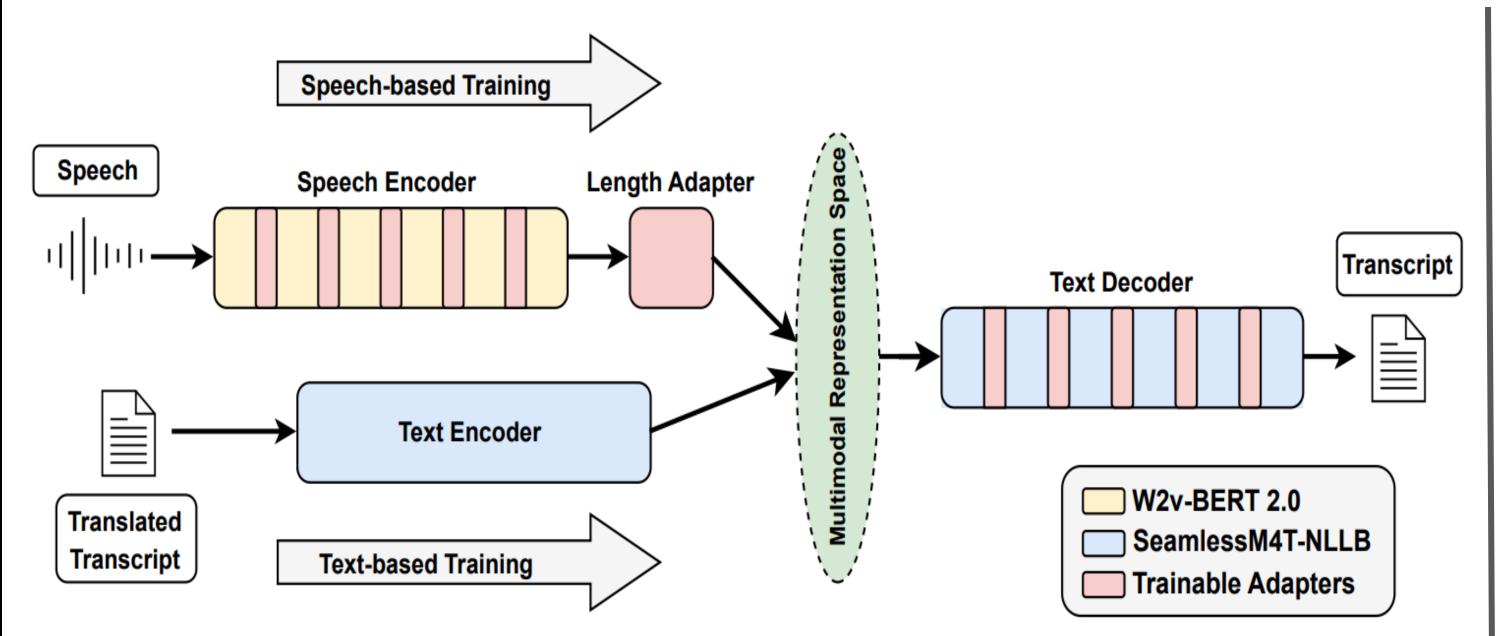


SIGTYP


Abhishek Gupta* Amruta Parulekar* Sameep Chattopadhyay* Preethi Jyothi Indian Institute of Technology Bombay, Mumbai, India

* Equal Contribution

<u>Aim:</u> To efficiently utilize textual and cross-lingual speech data in a computationally efficient manner to enhance the ASR performance of multilingual multimodal models for low-resource languages.



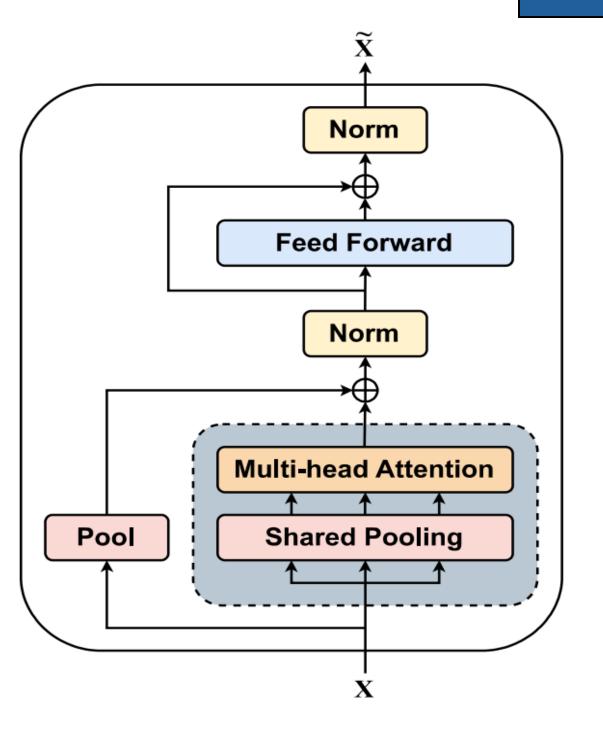
Length adaptor with just **5 hours** of labeled speech provides significant improvement in ASR performance using **< 10** % of the total parameters.

Adapting the **Text Decoder** with **translated transcript pairs** improves the ASR performance of SeamlessM4T, achieving both data and parameter efficiency.

Combining Both Techniques

A multimodal model like SeamlessM4T can be fine-tuned in a parameter-efficient manner with either speech or text data by inserting adapters in the pretrained base model.

We test our adaptation techniques using the primarily conversational speech data from **IndicVoices** Dataset.


Language	Component Fine-tuned	No	None		Length Adapter		Encoder Adapter		Decoder Adapter		Len+Enc Adapter		Encoder Adapter (L)		All Components	
	Learnable Parameters	-		46 M		6 M		6 M		52 M		50 M		571 M		
	System	A	T-A	A	T-A	A	T-A	A	T-A	A	T-A	A	T-A	A	T-A	
Maithili	WER	82.20	68.24	54.97	54.74	52.95	48.14	63.52	58.39	47.92	45.98	46.08	44.60	42.58	46.5	
	CER	43.39	36.84	26.10	27.10	22.86	21.58	31.60	29.70	20.56	20.47	19.20	19.52	17.14	20.7	
Malayalam	WER	56.15	55.3	52.82	52.51	49.71	50.14	56.03	53.71	48.22	48.19	47.81	47.75	47.38	45.	
	CER	20.65	20.43	18.14	18.87	15.34	16.35	20.21	20.00	14.76	15.46	14.12	14.92	13.86	13.3	
Kannada	WER	69.29	68.13	55.48	53.83	52.54	53.29	62.88	58.71	49.36	48.24	49.14	47.75	45.48	43.	
	CER	29.11	26.91	20.38	20.94	16.95	18.84	23.76	23.44	15.63	16.51	15.26	14.92	14.06	14.1	
Gujarati	WER	41.03	35.45	33.91	34.41	29.20	27.72	38.88	35.53	28.03	27.73	28.09	27.90	25.56	26.3	
	CER	24.50	18.66	16.40	17.41	11.96	12.05	19.28	17.80	12.63	12.35	12.00	12.50	11.28	11.6	
Odia	WER	42.81	38.39	35.48	34.99	32.03	32.97	38.55	36.24	30.09	31.18	30.04	28.92	30.54	30.1	
	CER	17.38	16.22	13.75	14.62	10.57	11.25	14.50	14.57	10.11	11.32	10.01	9.92	10.37	10.3	
Bengali	WER	37.70	35.44	35.90	35.09	29.65	28.77	38.10	35.60	29.96	28.50	29.30	31.92	28.12	27.0	
	CER	18.44	17.73	17.08	17.22	12.76	12.58	18.59	17.72	13.06	12.38	12.52	14.63	12.12	11.9	

We analyze the adaptation strategies for 6 Indic languages.

System A: Only ASR finetuning (ASR FT)

System T-A: Text-only adaptation followed by ASR FT

Cross-lingual Transfer Learning

Hypothesis

A length adapter (left)

can capture the

prosodic features of a

language without

overfitting on its syntax.

Can fine-tuning the length adaptor with speech from a related language, combined with target language text adaptation, improve the ASR quality in an extremely low-resource setting without any available speech data?

Language 1	Language 2	Genetic	Text- only ASR fine-tuned		Number of	WER	CER	
(Target)	(ASR Fine-tuning)	Distance	Adaptation	Component	Parameters	WEK	CEK	
Maithili	None	-	No	None	-	82.2	43.3	
			No	Length Adapter	46M	79.77	40.0	
	Pangali	0.625	No	Encoder Adapter	50M	81.81	41.6	
	Bengali	0.023	No	Len. + Enc. Adapter	52M	80.81	40.4	
			Yes	Length Adapter	6M+46M	72.52	39.3	
	Kannada	1.000	No	Length Adapter	46M	80.29	38.3	
	Kaiiiaua	1.000	No	Encoder Adapter	50M	85.25	41.5	
	None	-	No	None	-	42.81	17.3	
		0.375	No	Length adapter	46M	41.05	15.0	
Odia	Rangali		No	Encoder Adapter	50M	43.67	16.0	
Odia	Bengali		No	Len. + Enc. Adapter	52M	42.4	15.2	
			Yes	Length Adapter	6M+46M	35.45	13.9	
	Kannada	1.000	No	Length Adapter	46M	41.21	14.0	
	Kaiiiaua	1.000	No	Encoder Adapter	50M	44.01	14.5	

Target Languages: Maithili & Odia

High-resource Pivots: Bengali (Related) & Kannada (Unrelated)

Key Result: 17% reduction in relative WER in a zero-shot setting without any labeled speech from the target language.

The authors acknowledge the support of the Amazon IITB AI ML Initiative and the consortium project on "Speech Technologies in Indian Languages" under National Language Translation Mission (NLTM), MeitY, Government of India.