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1. Problem Statement 
Train a CNN model with an upper limit of 10M parameters. Please download CUB dataset. Use 
default train-test split for this task. Submissions will be evaluated based on parameter efficiency, 
training time efficiency (no. of iterations) and accuracy. Submissions should include report, code 
and final model checkpoint. Drive link is fine for checkpoint. Report must include architecture 
and training details. Training loss and accuracy curves should also be incorporated along with 
final results. External models: Only ImageNet pretrained models are allowed. The correctness of 
the code, trade-off between accuracy and model complexity (no of parameters), and presentation 
of the results. You have to attach the log files.   

 

2. Experimentation 
a. Choosing a base model 

LITERATURE SURVEY 

CNN 
architecture 

No. of 
params 

Properties Pretrained 
on 
Imagenet 

Good choice for fine-
grained classification 

MobileNetV2 3.4M Designed for 
mobile and 
embedded 
vision 
applications. 

Yes No 

SqueezeNet <1M Achieves 
AlexNet-level 
accuracy with 
50x fewer 
parameters 

No No 

ShuffleNet <10M Designed to 
balance 
between 
accuracy and 
computational 
efficiency. 

Yes No 

DenseNet-
121 

6.9M It's relatively 
compact 
compared to 
deeper 
architectures 
like ResNet-50. 

 

Yes DenseNet's dense 
connectivity pattern 
allows for feature reuse 
and gradient flow 
throughout the network, 
making it effective at 
capturing fine details and 
subtle differences 
between classes. This 
dense connectivity can be 



particularly 
advantageous for fine-
grained classification 
tasks, where 
distinguishing between 
similar object categories 
is crucial. 

MobileNetV3 <5M Further 
improves on 
MobileNetV2 
with a focus on 
efficient and 
fast inference. 

Yes No 

EfficientNet-
B0 

5.3M Designed to 
achieve high 
accuracy with 
fewer 
parameters. 

Yes EfficientNet models are 
designed to achieve high 
accuracy with fewer 
parameters, making them 
efficient for both training 
and inference. The 
balance between model 
size and performance is 
crucial for fine-grained 
classification tasks, 
especially when 
computational resources 
are limited. EfficientNet-
B0's optimization for 
efficiency could make it 
well-suited for such 
tasks. 

VGG-11 9.1M Relatively 
compact 
compared to 
deeper variants 

Yes No 

 

 

 

 

 

 

 



EXPERIMENTS 

• We first tried using Densenet121.  
• However, we were not able to train it fast with the available 

computational resources.  
• Hence, we switched to EfficientnetB0 and finetuned the entire 

model while initializing with imagenet pretrained weights. 
• Then, to improve accuracy, we shifted to EfficientnetB2 as 

EfficientNet-B2 generally achieves higher accuracy compared to 
EfficientNet-B0, especially on large and complex datasets. The 
larger model size allows EfficientNet-B2 to capture more fine-
grained features and learn more intricate patterns in the data. 

ARCHITECTURE FINALIZED 

EfficientNet is a convolutional neural network (CNN) architecture that is designed to 
optimize the network’s depth, width, and resolution simultaneously. The architecture uses 
a combination of neural architecture search and model scaling to achieve this.  

It uses a simple yet highly effective compound coefficient to scale up CNNs in a more 
structured manner. Unlike conventional approaches that arbitrarily scale network 
dimensions, such as width, depth and resolution, this method uniformly scales each 
dimension with a fixed set of scaling coefficients.

 
 



 
b. Adding batch normalization 
• In fine-grained classification, where distinguishing between visually similar 

categories is key, Batch Normalization enhances model performance. 
• By normalizing activations within each layer, it mitigates the issue of internal 

covariate shift, ensuring stable optimization during training.  
• This stability accelerates convergence and allows for higher learning rates, 

expediting the learning process.  
• Moreover, BatchNorm acts as a form of regularization by adding noise to each mini-

batch, thereby preventing overfitting, a common challenge in fine-grained tasks. 
• It helps the model learn features that are more generalizable across different 

samples, enhancing its ability to generalize to unseen data.  

Efficientnet already has batch normalized layers, which were used by us 
while training 

c. Freezing layers 
• Fine-tuning the entire model allows for learning task-specific features while 

leveraging pre-trained representations, which is beneficial for datasets with 
significant differences from the original one. However, this approach demands more 
computational resources and may risk overfitting with small datasets or highly 
dissimilar tasks.  

• On the other hand, freezing layers preserves pre-trained features, aiding faster 
convergence and mitigating overfitting, particularly with limited data. While it may 
not capture task-specific features as effectively, freezing layers proves efficient 
when computational resources are constrained or when pre-trained features closely 
align with the new task. 

We first tried experiments where we trained the entire model, and then 
we tried separate experiments where we froze all pretrained (Imagenet) 
layers except the last few blocks and finetuned the model. The initialized 
weights in both cases were from imagenet pretraining. 

d. Adding Dropout 
• Dropout regularization randomly deactivates neurons during training, encouraging 

the model to learn more robust features, essential for discerning subtle visual 
differences between categories. 

• It introduces noise into the training process, preventing memorization of the 
training data and promoting better generalization to unseen examples. Additionally, 
dropout's ensembling effect aids in improving performance and prevents overfitting 
by averaging predictions from multiple subnetworks.  

We tried experiments with 0.2, 0.5 and no dropout in the final fully 
connected layer of the model. 



 
7. Model specification choices 

a. Choosing an optimizer 
The Adam optimizer’s adaptive learning rate method dynamically adjusts learning rates 
for each parameter, leading to faster convergence and improved model performance. This 
is particularly beneficial in fine-grained tasks where subtle visual differences need to be 
discerned. Additionally, Adam uses momentum to navigate complex and high-dimensional 
parameter spaces more efficiently. This results in faster training and better generalization. 
We used the Adam optimizer for all our experiments 

b. Choosing a learning rate scheduler 
A learning rate scheduler is crucial to optimize convergence, stability, generalization, and 
training efficiency by fine-tuning the learning rate. The straightforward and effective 
StepLR scheduler reduces the learning rate by a factor after a certain number of epochs.  
ReduceLROnPlateau dynamically adjusts the learning rate based on validation loss or 
accuracy to prevent the model from getting stuck in local minima or plateau.  
We used the StepLR scheduler and ReduceLROnPlateau and observed 
better convergence as compared to without a scheduler(lr_init=0.001) 

c. Choosing the activation function 
ReLU is widely used and has been proven effective in various tasks, including fine-grained 
classification where subtle differences between classes are important. It's computationally 
efficient and helps in capturing non-linear relationships in the data.  Leaky ReLU is used to 
combat the problem of dying ReLUs 

We used the ReLU activation in the FC layer for all our experiments 

d. Choosing batch size 
For image classification, a batch size between 16 to 64 is commonly effective.  Larger batch 
sizes leverage parallel processing for faster computation but may require more memory 
and could lead to overfitting with smaller datasets. Smaller batch sizes might generalize 
better but converge slower.  

We experimented with batch size for a few epochs and chose the batch 
size of 64 as it gave good and fast convergence 

e. Choosing a loss function 
For multi-class classification, the categorical cross-entropy compares the predicted class 
probabilities with true class labels, penalizing deviations from the correct classification. 

We used the categorical cross entropy loss in all experiments 

f. Setting up early stopping 
Early stopping prevents overfitting by monitoring the model's performance on a validation 
set and stopping training when performance starts to degrade, thus helping to find the 
optimal balance between model complexity and generalization. 

We set up our model to stop training if validation accuracy did not 
improve for 3 consecutive epochs.  
 



8. Results 
a. Architecture experiment 

EfficientnetB0 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping 
– CCELoss – Batchsize64 – ReLUFC – Adam – NoFrozenBlocks 

Testing Accuracy: 73.37% 

Trainable Parameters: 4263748 

Total Parameters: 4263748 

Epochs required:14 

Loss plots: 

 

Validation accuracy plot 

 



EfficientnetB2 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping 
– CCELoss – Batchsize64 – ReLUFC – Adam – NoFrozenBlocks 

Testing Accuracy: 73.92%  

Trainable Parameters: 7982794 

Total parameters: 7982794 

Epochs required: 19 

Loss plots: 

 

Validation accuracy plot: 

 

 

 



b. Layer Freezing experiment 
EfficientnetB0 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping 
– CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock 

Testing Accuracy: 70.76% 

Trainable Parameters: 1010200 

Total Parameters: 4263748 

Epochs required: 20 

Loss plots: 

 

Validation accuracy plot: 

 



EfficientnetB2 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping 
– CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock 

Testing Accuracy: 69.8% 

Trainable Parameters: 2229136 

Total Parameters: 7982794 

Epochs required: 17 

Loss plots: 

 

Validation accuracy plot: 

 

 

 



c. Dropout Experiment 
EfficientnetB2 – WithDropout0.5 - WithBatchNorm – StepLRscheduler – WithEarlyStopping – 
CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock 

Testing Accuracy: 54.69% 

Trainable Parameters: 2229136 

Total Parameters: 7982794 

Epochs required: 18 

Loss plots: 

 

Validation accuracy plot 

 

 



EfficientnetB2 – WithDropout0.2 - WithBatchNorm – StepLRscheduler – WithEarlyStopping – 
CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock 

Testing Accuracy: 69.14% 

Trainable Parameters: 2229136 

Total Parameters: 7982794 

Epochs required: 20 

Loss plots: 

 

Validation accuracy plot 

 

 



d. LR Scheduler experiment 
EfficientnetB0 – WithoutDropout - WithBatchNorm – ReduceLROnPlateauscheduler – 
WithEarlyStopping – CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock 

Testing Accuracy: 69.61% 

Trainable Parameters: 1010200 

Total Parameters: 4263748 

Epochs required: 11 

Loss plots: 

 

Validation accuracy plot: 

 



EfficientnetB0 – WithoutDropout - WithBatchNorm – WithoutLRScheduler– 
WithEarlyStopping – CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock 

Testing Accuracy: 69.09% 

Trainable Parameters: 1010200 

Total Parameters: 4263748 

Epochs required: 11 

Loss plots: 

 

Validation accuracy plot: 

 



e. Activation function experiment 
EfficientnetB0 – WithDropout0.2 - WithBatchNorm – StepLRscheduler – WithEarlyStopping – 
CCELoss – Batchsize64 – LeakyReLUFC – Adam – FreezeAllExceptOneBlock 

Testing Accuracy: 68.62% 

Trainable Parameters: 1010200 

Total Parameters: 4263748 

Epochs required: 11 

Loss plots: 

 

Validation accuracy plot: 

 



 

9. Conclusion (Best model, Parameter accuracy tradeoff) 
Best accuracy without dropout  
Dropout may not have helped due to the complexity of the model, insufficient 
regularization, or a lack of overfitting. 

Best accuracy with batch normalization  
Batch normalization helped by reducing internal covariate shift and accelerating 
convergence by stabilizing the training process.  

Best accuracy with StepLR scheduler 
StepLR scheduler helped by dynamically adjusting the learning rate at predefined epochs, 
facilitating faster convergence and preventing oscillations. Plateau LR performed worse 
than StepLR due to its sensitivity to small fluctuations in loss, potentially leading to 
premature convergence or oscillations in learning rate. 

Best accuracy with early stopping  
Early stopping helped by preventing overfitting and improving generalization by halting 
training when the model's performance on the validation set started to deteriorate.  

Best accuracy with categorical cross entropy loss  
Categorical cross entropy helped by quantifying the difference between predicted and 
actual class distributions, optimizing model parameters to minimize this discrepancy 
during training.  

Best accuracy with batch size 64  
Batch size 64 was the best due to its balance between computational efficiency and 
generalization ability, leveraging sufficient batch diversity without overwhelming memory 
resources.  

Best accuracy with ReLU activation in the fully connected layer 
Since there weren’t outliers, leaky Rely didn’t give benefits. It is also slower than ReLU 

Best accuracy with Adam optimizer 
Adam performed best due to its adaptive learning rate and momentum, efficiently 
navigating complex optimization landscapes and facilitating rapid convergence. 

Best results- Trainable parameter and testing accuracy tradeoff 

Model Trainable params Testing Accuracy 
EfficientnetB0 - Full 4263748 73.37% 
EfficientnetB2 - Full 7982784 73.92% 
EfficientnetB0 – All except 
last block frozen 

1010200 70.76% 

 
Link to all models and logs : https://drive.google.com/drive/folders/1phTqhcbXiT-
V9Rx4KdOh5HBTWWZ1MTU5?usp=sharing 

 

https://drive.google.com/drive/folders/1phTqhcbXiT-V9Rx4KdOh5HBTWWZ1MTU5?usp=sharing
https://drive.google.com/drive/folders/1phTqhcbXiT-V9Rx4KdOh5HBTWWZ1MTU5?usp=sharing


10. Appendix 
a. More about model layers and freezing strategy 

 
Fig A: EfficientnetB0 

 

 
Fig B: EfficientnetB2 

 
For model freezing, first, we froze all parameters of the model and we selectively unfroze specific 
parameters in the model, including the last few layers of the model's blocks, fully connected 
layers, and batch normalization layers. Different variations of layer freezing was tried out. 
  
 
 
 
 
 
 
 
 
 



b. Code snippets 
Code to freeze layers: 

 
Code to add dropout: 

 
Code to test: 

 
Code to load data: 

 
Code for loss function, optimizer and LR scheduler: 

 
Code for early stopping: 

 
Code for validation loop(inside training loop): 

 
 



Code for training loop(excluding validation part): 

 


