

GNR 638

Mini-Project I

Fine Grained Classification of Images Using
Convolutional Neural Networks

Amruta Parulekar & Hemant Hajare

20d070009 20d070037

Indian Institute of Technology, Bombay

Contents:

1. Problem statement
2. Experimentation

a. Choosing a base model
b. Adding layer normalization
c. Freezing layers
d. Adding dropout

3. Model specification choices
a. Choosing an optimizer
b. Choosing a learning rate scheduler
c. Choosing the activation function
d. Choosing batch size
e. Choosing a loss function
f. Setting up early stopping

4. Results
a. Architecture experiment
b. Layer freezing experiment
c. Dropout experiment
d. LR Scheduler experiment
e. Activation function experiment

5. Conclusion-best results–link to logs–param vs accu
6. Appendix

a. More about model layers and freezing strategy
b. Code snippets

1. Problem Statement
Train a CNN model with an upper limit of 10M parameters. Please download CUB dataset. Use
default train-test split for this task. Submissions will be evaluated based on parameter efficiency,
training time efficiency (no. of iterations) and accuracy. Submissions should include report, code
and final model checkpoint. Drive link is fine for checkpoint. Report must include architecture
and training details. Training loss and accuracy curves should also be incorporated along with
final results. External models: Only ImageNet pretrained models are allowed. The correctness of
the code, trade-off between accuracy and model complexity (no of parameters), and presentation
of the results. You have to attach the log files.

2. Experimentation
a. Choosing a base model

LITERATURE SURVEY

CNN
architecture

No. of
params

Properties Pretrained
on
Imagenet

Good choice for fine-
grained classification

MobileNetV2 3.4M Designed for
mobile and
embedded
vision
applications.

Yes No

SqueezeNet <1M Achieves
AlexNet-level
accuracy with
50x fewer
parameters

No No

ShuffleNet <10M Designed to
balance
between
accuracy and
computational
efficiency.

Yes No

DenseNet-
121

6.9M It's relatively
compact
compared to
deeper
architectures
like ResNet-50.

Yes DenseNet's dense
connectivity pattern
allows for feature reuse
and gradient flow
throughout the network,
making it effective at
capturing fine details and
subtle differences
between classes. This
dense connectivity can be

particularly
advantageous for fine-
grained classification
tasks, where
distinguishing between
similar object categories
is crucial.

MobileNetV3 <5M Further
improves on
MobileNetV2
with a focus on
efficient and
fast inference.

Yes No

EfficientNet-
B0

5.3M Designed to
achieve high
accuracy with
fewer
parameters.

Yes EfficientNet models are
designed to achieve high
accuracy with fewer
parameters, making them
efficient for both training
and inference. The
balance between model
size and performance is
crucial for fine-grained
classification tasks,
especially when
computational resources
are limited. EfficientNet-
B0's optimization for
efficiency could make it
well-suited for such
tasks.

VGG-11 9.1M Relatively
compact
compared to
deeper variants

Yes No

EXPERIMENTS

• We first tried using Densenet121.
• However, we were not able to train it fast with the available

computational resources.
• Hence, we switched to EfficientnetB0 and finetuned the entire

model while initializing with imagenet pretrained weights.
• Then, to improve accuracy, we shifted to EfficientnetB2 as

EfficientNet-B2 generally achieves higher accuracy compared to
EfficientNet-B0, especially on large and complex datasets. The
larger model size allows EfficientNet-B2 to capture more fine-
grained features and learn more intricate patterns in the data.

ARCHITECTURE FINALIZED

EfficientNet is a convolutional neural network (CNN) architecture that is designed to
optimize the network’s depth, width, and resolution simultaneously. The architecture uses
a combination of neural architecture search and model scaling to achieve this.

It uses a simple yet highly effective compound coefficient to scale up CNNs in a more
structured manner. Unlike conventional approaches that arbitrarily scale network
dimensions, such as width, depth and resolution, this method uniformly scales each
dimension with a fixed set of scaling coefficients.

b. Adding batch normalization
• In fine-grained classification, where distinguishing between visually similar

categories is key, Batch Normalization enhances model performance.
• By normalizing activations within each layer, it mitigates the issue of internal

covariate shift, ensuring stable optimization during training.
• This stability accelerates convergence and allows for higher learning rates,

expediting the learning process.
• Moreover, BatchNorm acts as a form of regularization by adding noise to each mini-

batch, thereby preventing overfitting, a common challenge in fine-grained tasks.
• It helps the model learn features that are more generalizable across different

samples, enhancing its ability to generalize to unseen data.

Efficientnet already has batch normalized layers, which were used by us
while training

c. Freezing layers
• Fine-tuning the entire model allows for learning task-specific features while

leveraging pre-trained representations, which is beneficial for datasets with
significant differences from the original one. However, this approach demands more
computational resources and may risk overfitting with small datasets or highly
dissimilar tasks.

• On the other hand, freezing layers preserves pre-trained features, aiding faster
convergence and mitigating overfitting, particularly with limited data. While it may
not capture task-specific features as effectively, freezing layers proves efficient
when computational resources are constrained or when pre-trained features closely
align with the new task.

We first tried experiments where we trained the entire model, and then
we tried separate experiments where we froze all pretrained (Imagenet)
layers except the last few blocks and finetuned the model. The initialized
weights in both cases were from imagenet pretraining.

d. Adding Dropout
• Dropout regularization randomly deactivates neurons during training, encouraging

the model to learn more robust features, essential for discerning subtle visual
differences between categories.

• It introduces noise into the training process, preventing memorization of the
training data and promoting better generalization to unseen examples. Additionally,
dropout's ensembling effect aids in improving performance and prevents overfitting
by averaging predictions from multiple subnetworks.

We tried experiments with 0.2, 0.5 and no dropout in the final fully
connected layer of the model.

7. Model specification choices

a. Choosing an optimizer
The Adam optimizer’s adaptive learning rate method dynamically adjusts learning rates
for each parameter, leading to faster convergence and improved model performance. This
is particularly beneficial in fine-grained tasks where subtle visual differences need to be
discerned. Additionally, Adam uses momentum to navigate complex and high-dimensional
parameter spaces more efficiently. This results in faster training and better generalization.
We used the Adam optimizer for all our experiments

b. Choosing a learning rate scheduler
A learning rate scheduler is crucial to optimize convergence, stability, generalization, and
training efficiency by fine-tuning the learning rate. The straightforward and effective
StepLR scheduler reduces the learning rate by a factor after a certain number of epochs.
ReduceLROnPlateau dynamically adjusts the learning rate based on validation loss or
accuracy to prevent the model from getting stuck in local minima or plateau.
We used the StepLR scheduler and ReduceLROnPlateau and observed
better convergence as compared to without a scheduler(lr_init=0.001)

c. Choosing the activation function
ReLU is widely used and has been proven effective in various tasks, including fine-grained
classification where subtle differences between classes are important. It's computationally
efficient and helps in capturing non-linear relationships in the data. Leaky ReLU is used to
combat the problem of dying ReLUs

We used the ReLU activation in the FC layer for all our experiments

d. Choosing batch size
For image classification, a batch size between 16 to 64 is commonly effective. Larger batch
sizes leverage parallel processing for faster computation but may require more memory
and could lead to overfitting with smaller datasets. Smaller batch sizes might generalize
better but converge slower.

We experimented with batch size for a few epochs and chose the batch
size of 64 as it gave good and fast convergence

e. Choosing a loss function
For multi-class classification, the categorical cross-entropy compares the predicted class
probabilities with true class labels, penalizing deviations from the correct classification.

We used the categorical cross entropy loss in all experiments

f. Setting up early stopping
Early stopping prevents overfitting by monitoring the model's performance on a validation
set and stopping training when performance starts to degrade, thus helping to find the
optimal balance between model complexity and generalization.

We set up our model to stop training if validation accuracy did not
improve for 3 consecutive epochs.

8. Results
a. Architecture experiment

EfficientnetB0 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping
– CCELoss – Batchsize64 – ReLUFC – Adam – NoFrozenBlocks

Testing Accuracy: 73.37%

Trainable Parameters: 4263748

Total Parameters: 4263748

Epochs required:14

Loss plots:

Validation accuracy plot

EfficientnetB2 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping
– CCELoss – Batchsize64 – ReLUFC – Adam – NoFrozenBlocks

Testing Accuracy: 73.92%

Trainable Parameters: 7982794

Total parameters: 7982794

Epochs required: 19

Loss plots:

Validation accuracy plot:

b. Layer Freezing experiment
EfficientnetB0 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping
– CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock

Testing Accuracy: 70.76%

Trainable Parameters: 1010200

Total Parameters: 4263748

Epochs required: 20

Loss plots:

Validation accuracy plot:

EfficientnetB2 – WithoutDropout - WithBatchNorm – StepLRscheduler – WithEarlyStopping
– CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock

Testing Accuracy: 69.8%

Trainable Parameters: 2229136

Total Parameters: 7982794

Epochs required: 17

Loss plots:

Validation accuracy plot:

c. Dropout Experiment
EfficientnetB2 – WithDropout0.5 - WithBatchNorm – StepLRscheduler – WithEarlyStopping –
CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock

Testing Accuracy: 54.69%

Trainable Parameters: 2229136

Total Parameters: 7982794

Epochs required: 18

Loss plots:

Validation accuracy plot

EfficientnetB2 – WithDropout0.2 - WithBatchNorm – StepLRscheduler – WithEarlyStopping –
CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock

Testing Accuracy: 69.14%

Trainable Parameters: 2229136

Total Parameters: 7982794

Epochs required: 20

Loss plots:

Validation accuracy plot

d. LR Scheduler experiment
EfficientnetB0 – WithoutDropout - WithBatchNorm – ReduceLROnPlateauscheduler –
WithEarlyStopping – CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock

Testing Accuracy: 69.61%

Trainable Parameters: 1010200

Total Parameters: 4263748

Epochs required: 11

Loss plots:

Validation accuracy plot:

EfficientnetB0 – WithoutDropout - WithBatchNorm – WithoutLRScheduler–
WithEarlyStopping – CCELoss – Batchsize64 – ReLUFC – Adam – FreezeAllExceptOneBlock

Testing Accuracy: 69.09%

Trainable Parameters: 1010200

Total Parameters: 4263748

Epochs required: 11

Loss plots:

Validation accuracy plot:

e. Activation function experiment
EfficientnetB0 – WithDropout0.2 - WithBatchNorm – StepLRscheduler – WithEarlyStopping –
CCELoss – Batchsize64 – LeakyReLUFC – Adam – FreezeAllExceptOneBlock

Testing Accuracy: 68.62%

Trainable Parameters: 1010200

Total Parameters: 4263748

Epochs required: 11

Loss plots:

Validation accuracy plot:

9. Conclusion (Best model, Parameter accuracy tradeoff)
Best accuracy without dropout
Dropout may not have helped due to the complexity of the model, insufficient
regularization, or a lack of overfitting.

Best accuracy with batch normalization
Batch normalization helped by reducing internal covariate shift and accelerating
convergence by stabilizing the training process.

Best accuracy with StepLR scheduler
StepLR scheduler helped by dynamically adjusting the learning rate at predefined epochs,
facilitating faster convergence and preventing oscillations. Plateau LR performed worse
than StepLR due to its sensitivity to small fluctuations in loss, potentially leading to
premature convergence or oscillations in learning rate.

Best accuracy with early stopping
Early stopping helped by preventing overfitting and improving generalization by halting
training when the model's performance on the validation set started to deteriorate.

Best accuracy with categorical cross entropy loss
Categorical cross entropy helped by quantifying the difference between predicted and
actual class distributions, optimizing model parameters to minimize this discrepancy
during training.

Best accuracy with batch size 64
Batch size 64 was the best due to its balance between computational efficiency and
generalization ability, leveraging sufficient batch diversity without overwhelming memory
resources.

Best accuracy with ReLU activation in the fully connected layer
Since there weren’t outliers, leaky Rely didn’t give benefits. It is also slower than ReLU

Best accuracy with Adam optimizer
Adam performed best due to its adaptive learning rate and momentum, efficiently
navigating complex optimization landscapes and facilitating rapid convergence.

Best results- Trainable parameter and testing accuracy tradeoff

Model Trainable params Testing Accuracy
EfficientnetB0 - Full 4263748 73.37%
EfficientnetB2 - Full 7982784 73.92%
EfficientnetB0 – All except
last block frozen

1010200 70.76%

Link to all models and logs : https://drive.google.com/drive/folders/1phTqhcbXiT-
V9Rx4KdOh5HBTWWZ1MTU5?usp=sharing

https://drive.google.com/drive/folders/1phTqhcbXiT-V9Rx4KdOh5HBTWWZ1MTU5?usp=sharing
https://drive.google.com/drive/folders/1phTqhcbXiT-V9Rx4KdOh5HBTWWZ1MTU5?usp=sharing

10. Appendix
a. More about model layers and freezing strategy

Fig A: EfficientnetB0

Fig B: EfficientnetB2

For model freezing, first, we froze all parameters of the model and we selectively unfroze specific
parameters in the model, including the last few layers of the model's blocks, fully connected
layers, and batch normalization layers. Different variations of layer freezing was tried out.

b. Code snippets
Code to freeze layers:

Code to add dropout:

Code to test:

Code to load data:

Code for loss function, optimizer and LR scheduler:

Code for early stopping:

Code for validation loop(inside training loop):

Code for training loop(excluding validation part):

