GNR 638
Mini-Project 2

Denoising of Images using Convolutional
Neural Networks

Amruta Parulekar & Hemant Hajare
204070009 204070037

Indian Institute of Technology, Bombay

Contents:

1.Problem statement
2.Data preprocessing
3.Experimentation
a.Choosing a base model
i. CBDNet
ii. RIDNet
iil. Why CBDNet over RIDNet?
b.Modifications of architecture
i. Modifications in skip connections
ii. Modifications in max pool layers
iil. Modifications in Kernel sizes
c. Model specification choices
i. Choosing a learning rate
ii. Choosing amount of training data
iii. Choosing an optimizer and loss function
iv. Choosing a batch size
4.Results
a.Architecture experiments
b.Hyperparameter tuning experiments
c. Training curves
d.Qualitative results
5.Conclusion-best results

1) Problem statement

1. Download sharp images
2. Downscale the images to (256,448). (Set A)
3. Create a set of images by applying different gaussian filters to each image: (Set B)
a. Kernel size = 3x3, sigma = 0.3
b. Kernel size = 7x7 , sigma =1
c. Kernel size = 11x11, sigma = 1.6
4. Design a network to deblur images (Set B -> Set A) Upper Limit is 15 M parameters.
5. Test set will be provided along with ground truth later. We will also providing an evaluation script.
Please report PSNR score according to this score.
6. Please use numpy==1.24.4, PIL==10.2, scikit-image==0.21 for preprocessing and running evaluation
script.

2) Data preprocessing

We began by downsizing the images to (256,448) pixels, forming Set A.

Then, we created Set B having 3N images by applying different Gaussian filters to each image:
a. 3x3 kernel size and sigma of 0.3.

b. 7x7 kernel size with sigma set to 1.

c. 11x11 kernel size and sigma of 1.6.

This yielded a varied dataset, ranging from mild to significant blurring, enabling versatile
experimentation in image processing tasks.

A CSV file was made of corresponding image and target paths

3) Experimentation

a)_ Choosing a base model

Two existing architectures for denoising of images were studied. We finally chose CBDNet due to
numerous possible modifications that could be made in its architecture. After picking an architecture
suitable for the task, modifications were made in it .

1. CBDNet

Lasymm : Asymmetric loss

Ly : TV regularizer

Lyee : Reconstruction loss

CNNg : Noise Estimation Subnetwor

Aursywnn E«.L:sy:rrwn + /\TVE‘TV Lree

CBDNet : Convolutional Blind Denoising Network

Overall, this architecture aims to estimate noise in the input image and then remove that noise using a
series of convolutional layers. It follows a typical encoder-decoder architecture commonly used in image
denoising tasks, with skip connections to preserve spatial information.

a) NoiseEstimationSubnetwork:

e This subnetwork is responsible for estimating the noise in the input image.

e [t takes a 3-channel input image (presumably RGB) and passes it through a series of convolutional
layers with ReLU activations.

e The architecture consists of 5 convolutional layers (conv1 to conv5), where each layer has a kernel
size of 3x3 and padding of 1 to preserve spatial dimensions.

e The final convolutional layer (conv5) outputs a 3-channel map representing the estimated noise.

b) NonBlindDenoisingSubnetwork:

e This subnetwork aims to perform non-blind denoising, which means it removes noise from the
input image using the estimated noise map.

e [t starts with a series of convolutional layers (conv1 to conv5) with ReLU activations and a max-
pooling layer (pooll) to downsample the feature maps.

e Then, it continues with more convolutional layers (conv6 to conv11) and another max-pooling
layer (pool2).

e After that, it applies transposed convolutional layers (upsamplel and upsample2) to upsample the
feature maps.

e The upsampled feature maps are then added back to feature maps from earlier layers (add1 and
add2) before passing through more convolutional layers.

¢ Finally, the output is obtained through a 1x1 convolutional layer (out).

c) CBDNet (Combined Denoising and Deblurring Network):

e This is the main model that combines the noise estimation subnetwork and the non-blind
denoising subnetwork.

¢ In the forward pass, it first estimates the noise map using the NoiseEstimationSubnetwork.

e Optionally, it concatenates the estimated noise map with the input image before passing it to the
denoising subnetwork (commented out in the code).

e Then, it applies the non-blind denoising subnetwork to the input (optionally concatenated with
the noise map) to obtain the denoised output.

EAM ’- EAM ’- EAM " EAM ’—E
Convolutional Layer

Long skip connection (LSC) followed by RelU

2. RIDNet

Local connection (LC) El Sigmoid Function

T H> +é9L [%L | '_'_'éj' M N —-IE—»%»@, @ Element-wise addition

® Element-wise multiplication

Short skip connection (S5C) Global Pooling

Overall, RIDNet leverages the residual learning concept along with dense connections and attention
mechanisms provided by the EAM module to effectively denoise images while preserving important
details. It's a deep architecture capable of capturing both local and global features, making it suitable for
challenging denoising tasks.

a)

3.

EAM (Enhanced Attention Module):

EAM is a module designed to capture long-range dependencies and enhance feature
representation.

It consists of multiple convolutional layers with different dilation rates and a global average
pooling layer.

The module begins with two sets of dilated convolutional layers (conv1 and conv2) with
increasing dilation rates to capture features at different receptive field sizes.

The outputs of these dilated convolutions are concatenated and passed through another
convolutional layer (conv5) to fuse the features.

The fused features are then added to the input features (x) to create a residual connection (add1).
Subsequently, several convolutional layers (convé to conv10) follow, enhancing the feature
representation further.

The module concludes with a global average pooling layer (gap) to capture global context,
followed by a couple of convolutional layers (conv11 and conv12) to refine the features.

RIDNet:

RIDNet is the main architecture that utilizes multiple instances of the EAM module to denoise
images.

It begins with an initial convolutional layer (conv1) to process the input image.

This is followed by four instances of the EAM module (eam1 to eam4), each processing the
features successively.

After the final EAM module, there's a convolutional layer (conv2) that produces the denoised
output.

The final output is obtained by adding the denoised features (conv2) to the input features (x),
forming a residual connection (out).

Why CBDNet over RIDNet?

CBDNet offers a simpler architecture than RIDNet, making it easier to modify and adapt for specific
denoising tasks. With fewer layers and components, CBDNet is more straightforward to understand and
implement, providing flexibility for experimentation and customization. Its explicit noise estimation
subnetwork provides additional information about input noise characteristics, potentially enhancing
denoising performance. Moreover, CBDNet's stability during training, attributed to its simplicity, ensures
smoother convergence and better generalization, particularly beneficial when dealing with limited or
noisy datasets. Overall, CBDNet's simplicity and ease of modification make it an advantageous choice for
us as we seek flexibility in architecture design and adaptation to our denoising requirements.

b) Modifications of architecture

1. Modification in skip connections

Additional skip connections were added to the network.
o The output of conv12 was directly added to conv4 instead of being added to conv5.
o The output of conv1l3 was added to conv12 instead of directly passing it to conv14.
o The output of conv14 was directly added to conv2 instead of being added to conv3.

Benefits:

The skip connections might help in preserving more detailed information, as these connections
bypass fewer layers compared to the original design.

Skip connections allow easier flow of gradient information

The model may better capture low-level features, which could lead to better denoising
performance, especially in preserving image details.

These changes potentially simplify the flow of information and may help in training the model
more efficiently, as there are fewer intermediate connections between layers.

Overall, these changes aim to optimize the network architecture for better denoising performance
and potentially faster convergence during training.

However, the actual impact would depend on the specific dataset and denoising task. Hence,
testing these changes is necessary to validate their effectiveness.

. Modifications in max-pool layers

Depth was Increased:

o The number of convolutional layers was increased from 10 to 16.

o An additional pooling layer was introduced, augmenting the depth of the network.
Changes were Made in Pooling:

o One more pooling layer (pool3) was added to the network.
Up-sampling Layers were Added:

o Another up-sampling layer (upsample3) was included in the network.

Benefits

Increasing the depth of the network and adding more layers can potentially increase the model's
capacity to capture complex patterns and features in the input images, which might result in
improved denoising performance.

Additional pooling layers can help in capturing hierarchical features at different levels of
abstraction.

The introduction of more up-sampling layers can enhance the network's ability to reconstruct the
image while preserving spatial information, which is crucial for denoising tasks.

These changes may lead to a more powerful and expressive model, capable of handling a wider
range of denoising scenarios and producing higher-quality denoised images.

However, it's essential to note that increasing the depth and complexity of the network also
increases the computational cost and the risk of overfitting, especially if the dataset is not
sufficiently large or diverse. Therefore, proper training and validation was necessary to assess the
actual benefits of these changes.

3. Modifications in kernel sizes
e Adjustments in Convolutional Layers:
o The kernel size for conv1 and conv2 was increased to 7x7 with padding of 3, which
resulted in a larger receptive field for the initial layers.
o Similar changes were applied to conv12, which was modified to have a kernel size of 5x5
with padding of 2.
o The kernel size for the remaining convolutional layers remained unchanged.

Benefits:

e By increasing the kernel size of certain convolutional layers, the network can capture larger
spatial features, potentially enhancing its ability to denoise images effectively.

e Overall, these modifications are expected to enhance the performance and robustness of the
denoising network, enabling it to handle a wider range of input images and produce more
accurate denoised results.

e However, it's crucial to conduct thorough testing and validation to assess the actual benefits of
these changes and ensure that the network performs optimally on the task.

c) Model specification choices

1. Choosing a learning rate

The learning rate is a critical hyperparameter in training machine learning models. It determines

the size of steps taken during optimization to update the model's parameters. Setting it too high

might lead to unstable training or overshooting the optimal solution, while setting it too low could
result in slow convergence or getting trapped in local minima. Finding the right balance for the

learning rate is essential for achieving optimal model performance and convergence during the

training process.

We experimented with learning rates of 0.005,0.001 and 0.01 for our final model architecture.

2. Choosing amount of training data

The optimal amount of training data can vary depending on factors such as the complexity of the
problem, the quality of the data, and the model architecture being used. In some cases, having too
much irrelevant or noisy data can negatively impact performance, while in others, having
insufficient data might lead to overfitting. Therefore, it's essential to strike a balance and ensure
that the training dataset is sufficient to capture the underlying patterns of the problem without
introducing unnecessary complexity.

We experimented with training data of 5000 and 10000 images on our final model architecture,
due to computation constraints.(train-val split of 0.8-0.2)

3. Choosing the optimizer and loss function

We employed the Adam optimizer with its adaptive learning rate for training the image denoising
model, ensuring efficient optimization in the high-dimensional parameter space. This was paired
with a suitable loss function like Mean Squared Error (MSE) to guide the denoising process
effectively. We fine-tuned hyperparameters and monitored performance on validation data to
optimize model generalization and denoising quality.

3. Choosing a batch size

Larger batch sizes leverage parallel processing for faster computation but may require more
memory and could lead to overfitting with smaller datasets. Smaller batch sizes might generalize
better but converge slower. We used a fixed batch size of 32 for our experiments.

4)Results

a) Architecture experiments

The chosen base model CBDNet had architecture modifications made to it and PSNR was calculated on
the provided test set. The PSNR of the original blurred images with the sharp images was 26.68. Higher

PSNR indicated less noisy image.

Model architecture details

PSNR using script and test-set provided

Base CBDNet

27.83

Adding more skip connections 26.57
Removing skip connections 12.21
Increasing depth, adding pooling and 28.42
upsampling layers

Increasing kernel sizes 27.22

b)Hvperparameter tuning experiments

A train-val split of 0.8-0.2 was used on the model after increasing depth, adding pooling and upsampling
layers. Training details were varied as follows and PSNR was calculated on the provided test-set

Model training details

PSNR using script and test-set provided

0.005 LR, 10 epochs, 5000 images 28.42
0.01 LR, 5 epochs, 5000 images 26.06
0.001 LR, 20 epochs, 5000 images 28.08

0.005 LR, 10 epochs, 10000 images

b)Training curves

Training and validation losses for the best model were plotted as a function of epochs

Training loss as a function of epochs

Loss (1e-5)
[=)] ~ ~J 5] (=] 0
o o [o w o
L L L L 1 L

(=]
o
1

L
w
i

6 7 8 9 10
Epoch

[
w
-
Ln

le—5 Validation loss as a function of epochs

3.2 A

3.0 A

2.8 -

2.6

Loss

2.4 4

2.2 A

2.0

1.8

c)Qualitative results

The model sharpened the blurred images and brought them closer to the target

Output of model Ground truth

Blurred

5)Conclusion-best results

Best results were obtained after architectural manipulation of the CBDNet reference model, like
increasing depth, and adding pooling and upsampling layers. The optimal training details were 0.005
learning rate, 10 epochs and 5000 training samples with a 0.8-0.2 train-val split. The PSNR obtained
between translated images and sharp images of the provided test set by this model was 28.42

