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NOTE: 

THE BIG O NOTATION: 
• The big O notation is used to classify algorithms according to how their run time or 

space requirements grow as the input size grows. 

• Basically, this asymptotic notation is used to measure and compare the worst-case 

scenarios of algorithms theoretically. 

• The general step wise procedure for Big-O runtime analysis is as follows:   

1. Figure out what the input is and what n represents. 

2. Express the maximum number of operations, the algorithm performs in 

terms of n. 

3. Eliminate all excluding the highest order terms. 

4. Remove all the constant factors. 

  

1. ARRAYS 
 

About Arrays 

• An array is a collection of data of the same datatype referenced by a common 

name. 

• It consists of adjacent memory locations 

• The individual data elements are accessed using indices or subscripts, with the 

first element having index zero. 

• Arrays can be one dimensional, two dimensional or multi-dimensional. 
 

 

 

 

 

 

 

 

 

One-dimensional Array 



Using Arrays in programs 

• Declaration: datatype arrayname [arraylength]; 

• Initialization: datatype arrayname [ ]={data1,data2,…datan} ; or  

datatype arrayname [arraylength]={data1,data2,…datan} ; where n<=arraylength 

• Accessing data: arrayname[index]; where 0<=index<arraylength (index out of 

range gives error) 
 

Computer’s interpretation of arrays 

• When we declare an array, a block of memory of length 

elemtypeVariableSize*arraylength is created. 

• Arrayname gives the starting address of the zeroeth element which is also the 

address of the allocated block. (address of first byte) 

• Type of arrayname=elemtype* and Type of arrayname[i]=elemtype. 

• [] is a binary operator and arrayname, index are operands. Arrayname[index] gives 

variable of type arrayname stored at arrayname+ elemtypeVariableSize*index. 

• To pass an array to a function, pass the address of the first element and the 

arraylength so that operations occur on the original array. 

 

Character arrays 

• They store character strings, which are terminated with a null character(\0) and 

the remaining space has garbage values. 

• The null character or sentinel has ASCII value 0. 

• If we read in a string, it gets automatically terminated with a null byte 

• If we print out a string, it will get printed till the null byte. 
 

2D arrays 

• Datatype arrayname [row number][column number(fixed)]; 

• Datatype arrayname[m][n]={{ n data}{n data}…m groups}; 

• They may be stored in row major form or column major form 
 

Static vs dynamic arrays 

• Static arrays are allocated memory at compile time and the memory is allocated 

on the stack. They have a fixed size 

• dynamic arrays are allocated memory at the runtime and the memory is allocated 

from heap. They can increase their size when an insertion occurs and the array is 

full. We use the new keyword for these arrays 
 



Searching an array 

• Linear/sequential search: In this search technique, we compare elements of the 

array one by one with the key element that we are looking for. It is simple, but 

time consuming so preferred for smaller arrays. Best case occurs when the key 

element is at the first position of the array. 

• Binary search: In this search technique, we divide the array into two halves at 

each level and look for the key element in one of the two halves and the other half 

is rejected. This algorithm requires a sorted array. Best case occurs when the key 

element is in the middle of the array. 

 

    Formula for n- dimensional arrays: A[d1][d2][d3][d4] 

• Row major form: 

Address(A[i1][i2][i3][i4])=Lo+(i1*d2*d3*d4+i2*d3*d4+i3*d4+i4)*datatypesize 

• Column major form: 

Address(A[i1][i2][i3][i4])=Lo+(i4*d1*d2*d3+i3*d1*d2+i2*d1+i1)*datatypesize 

Operations on arrays 

• We can code get(), set(),max(),min(),insert(),delete() etc functions for arrays. 
 

2. STRINGS 
 

• A string is a collection of characters which can include alphabets, both in upper 

and lower case, numbers, blanks and any special character. 
• Strings are enclosed in double quotes and terminated with a null byte. 

• Characters are represented by values called ASCII codes or unicodes in the 

computer memory. (a=97; A=65) 

 

 

 



 

Some usage of strings 

• Include the string class to use strings. 

• Declaration and initialization 

string v=”abcdab”; // constructor 

string w(v); // constructor 

string x=v+w; //concatenation 

V[2]=v[3]; //indexing 

 

String functions 

Use the dot operator to use these functions. 

• char* strcpy (char*dest, const char*src); 

char* strncpy (char*dest, const char* src, size_tn); 

It copies the string pointed to by src, including the terminating null byte to the 

buffer pointed to by dest.It assumes that dest has sufficient memory. The second 

function copies atmost n bytes. If no null byte among these, dest might not be null 

terminated. 

• Unsigned int strlen (const char*s); 

Calculates length of the string pointed to by s, excluding the null terminated byte 

• Int strcmp (const char*s1, const char*s2); 

Int strncmp(const char* s1, const char* s2, size_tn); 

It compares the two strings s1 and s2. It returns an integer <,>,= 0 if s1 is found to 

be <,> or equal to s2. The second function compares the first n bytes of s1 and s2. 

• Int v.find( str);  

Int v.find(str,i); 

It returns the position of occurrence of str in v. The second function checks from 

index i.  

• V.substr(i); 

V.substr(I,n); 

It returns a substring of v starting from index i. The second function returns a 

substring of length n 

3. Matrices 
 

• A matrix is a two-dimensional data structure and all of its elements are of the same type. 

• Matrix [i,j] can be mapped to array A[k] by certain formulae. 

 



Types of matrices 

• Diagonal matrix: k=i-1 
 
 

• Triangular matrix: k=i*(i-1)/2 +j-1 (row major mapping)                                                                                                              

.                                 k= (j-1)*n- (j-2)*(j-1)/2 +j-i (column major mapping)                      

.                                 k=i*(i-1)/2 +j-1 (row major mapping)                                                                                                              

.                                 k= (j-1)*n- (j-2)*(j-1)/2 +j-i (column major mapping)                                                                                                                                                         

• Symmetric matrix:                k=i*(i-1)/2 +j-1 (row major mapping)                                                                                                              

.                                 k= (j-1)*n- (j-2)*(j-1)/2 +j-i (column major mapping)                      

.                                 k=i*(i-1)/2 +j-1 (row major mapping)                                                                                                              

.                                 k= (j-1)*n- (j-2)*(j-1)/2 +j-i (column major mapping)                    

.                                           M[I,j]=M[j,i]  

• Tridiagonal matrix: case 1: i<=j ; k= j-1        

                                     case 2: i>j; k=n+i-j-1 

                                   (mapped as lowerdiag middlediag topdiag)  
 

• Toeplitz matrix:   case 1: i-j=1; k= i-1        

       case 2: i-j=0; k=n-1+i-1 

       case 3: i-j=-1; k=2n-1 

       (mapped as abcdefghi) 

• Sparse matrix:  

They have very few non zero elements. 

They may be represented in: 

a) 3 column representation 

 

 

 

b) Compressed sparse rows representation 

We use 3 arrays, one consisting of the values of the elements, the second one 

consisting of the cumulative data of the number of elements per row and the 

third one consisting of column numbers of elements. 

c) Array based representation 

We provide the number of rows, columns and elements in the structure 

definition along with an array that gives us the indices and values of individual 

elements. 



4. LISTS 
 

A linked list is a sequence of data structures, which are connected together via 
links. 

           Types of Linked Lists 
 

a) Simple Linked List − Item navigation is forward only. 
 

 
 

o Basic Operations 
• Insertion − Adds an element at the beginning of the list. 
• Deletion − Deletes an element at the beginning of the list. 
• Display − Displays the complete list. 
• Search − Searches an element using the given key. 
• Delete − Deletes an element using the given key 

 

b)  Doubly Linked List − Items can be navigated forward and backward. 

              
o Basic Operations 

• Insertion − Adds an element at the beginning of the list. 
• Deletion − Deletes an element at the beginning of the list. 
• Insert Last − Adds an element at the end of the list. 
• Delete Last − Deletes an element from the end of the list. 
• Insert After − Adds an element after an item of the list. 
• Delete − Deletes an element from the list using the key. 
• Display forward − Displays the complete list in a forward manner. 
• Display backward − Displays the complete list in a backward manner. 

c) Circular Linked List − Last item contains link of the first element as next and 
the first element has a link to the last element as previous. 

Simple linked list as circular linked list        Doubly linked list as circular linked 
list 
o Basic Operations 

• insert − Inserts an element at the start of the list. 



• delete − Deletes an element from the start of the list. 
• display − Displays the list. 

5. STACKS 
 

• A stack is an Abstract Data Type (ADT) that allows all data operations at one end 

only. At any given time, we can only access the top element of a stack 

• This feature makes it Last-in-first-out data structure. Here, the element which is 

placed (inserted or added) last, is accessed first. 

• A stack can be implemented by means of Array, Structure, Pointer, and Linked List. 

•  Stack can either be a fixed size one or it may have a sense of dynamic resizing. 

 
      Basic Operations 

• Stack operations may involve initializing the stack, using it and de-initializing it. 
• push() − Pushing (storing) an element on the stack. 

void push(int data) { 
                 if(!isFull()) { 

            top = top + 1;    
            stack[top] = data; 
       }   else { 
            printf("Could not insert data, Stack is full.\n"); 
      } 
  }  

• pop() − Removing (accessing) an element from the stack. 
int pop(int data) { 
       if(!isempty()) { 
              data = stack[top]; 
              top = top - 1;    
              return data; 
       }   else { 
              printf("Could not retrieve data, Stack is empty.\n"); 
      } 
 } 

• peek() − get the top data element of the stack, without removing it. 
int peek() { 



                    return stack[top]; 
} 

• isFull() − check if stack is full. 
bool isfull() { 
        if(top == MAXSIZE) 
                 return true; 
        else 
                 return false; 
}   

• isEmpty() − check if stack is empty. 
bool isempty() { 
         if(top == -1) 
                  return true; 
         else 
                  return false; 
} 

• At all times, we maintain a pointer to the last pushed data on the stack. As this 
pointer always represents the top of the stack, hence named top, initialised at -1. 
The top pointer provides top value of the stack without actually removing it. 

 

6. QUEUES 
 

• Queue is an abstract data structure, open at both its ends.  

• One end is always used to insert data (enqueue) and the other is used to remove 

data (dequeue). 

• Queue follows First-In-First-Out methodology, i.e., the data item stored first will 

be accessed first. 

• A queue can be implemented using Arrays, Linked-lists, Pointers and Structures. 

 
         Basic Operations 

• Queue operations may involve initializing or defining the queue, utilizing it, and 
then    completely erasing it from the memory 

• enqueue() − add (store) an item to the queue. 
int enqueue(int data){       
       if(isfull()) 
              return 0; 
       rear = rear + 1; 
       queue[rear] = data; 



       return 1; 
} 

• dequeue() − remove (access) an item from the queue. 
int dequeue() { 
       if(isempty()) 
             return 0; 
     int data = queue[front]; 
     front = front + 1; 
     return data; 
}  

• peek() − Gets the element at the front of the queue without removing it. 
int peek() { 
    return queue[front]; 
} 

• isfull() − Checks if the queue is full. 
bool isfull() { 
   if(rear == MAXSIZE - 1) 
         return true; 
   else 
         return false; 
} 

• isempty() − Checks if the queue is empty. 
           bool isempty() { 
               if(front < 0 || front > rear)  
                       return true; 
                 else 
                       return false; 
            }   

• In queue, we always dequeue (or access) data, pointed by front pointer and while 
enqueing (or storing) data in the queue we take help of rear pointer. 
 

7. TREES 

Properties of a Tree 

• A tree can contain no nodes or it can contain one special node called 

the root with zero or more subtrees. 

• Every edge of the tree is directly or indirectly originated from the root. 

• Every child has only one parent, but one parent can have many children. 



 
a) General Tree 

1. Follow properties of a tree. 

2. A node can have any number of children. 

 
b) Binary Tree 

1. Follow properties of a tree. 

2. A node can have at most two child nodes (children). 

3. These two child nodes are known as the left child and right child. 

 

c) Binary Search Tree 

1. Follow properties of a binary tree. 

2. Has a unique property known as the binary-search-tree property. This 

property states that the value (or key) of the left child of a given node should 

be less than or equal to the parent value and the value of the right child should 

be greater than or equal to the parent value. 



 
 

d) AVL tree 

1. Follow properties of binary search trees. 

2. Self-balancing.(Automatically balances its own height) 

3. Each node stores a value called a balance factor which is the difference in 

height between its left subtree and right subtree. 

4. All the nodes must have a balance factor of -1, 0 or 1. 

5. After performing insertions or deletions, if there is at least one node that does 

not have a balance factor of -1, 0 or 1 then rotations should be performed to 

balance the tree (self-balancing). 

 

e)  Red-black tree. 

1. Follow properties of binary search trees. 

2. Self-balancing. 

3. Each node is either red or black. 

4.  The colours of the nodes are used to make sure that the tree remains 

approximately balanced during insertions and deletions 

5. The root is black (sometimes omitted). 

6. All leaves (denoted as NIL) are black. 

7. If a node is red, then both its children are black. 

8. Every path from a given node to any of its leaf nodes must go through the same 

number of black nodes. 



 

8. HEAPS 
• Heap is a special case of balanced binary tree data structure where the root-node 

key is compared with its children and arranged accordingly. 
          Types of heaps 
                   For Input → 35 33 42 10 14 19 27 44 26 31 

A) Min-Heap − Where the value of the root node is less than or equal to either of its 

children. 

 

 

 

 

B) Max-Heap − Where the value of the root node is greater than or equal to either of 

its children. 

 

 

 

Heap Construction Algorithm 
Insert one element at a time. At any point of time, heap must maintain its 

property. While insertion, we also assume that we are inserting a node in an 

already heapified tree. 

          Step 1 − Create a new node at the end of heap. 

          Step 2 − Assign new value to the node. 
          Step 3 − Compare the value of this child node with its parent. 
          Step 4 − If value of parent is (less than for max heap) (greater than for min heap)       
.                         child, then swap them. 
          Step 5 − Repeat step 3 & 4 until Heap property holds. 
 
 
 



Heap Deletion Algorithm 
Deletion in Max or Min Heap always happens at the root to remove the Maximum 

or minimum value. 

           Step 1 − Remove root node. 
           Step 2 − Move the last element of last level to root. 
           Step 3 − Compare the value of this child node with its parent. 
           Step 4 − If value of parent is (less than for max heap) (greater than for min heap) .   
.                          child, then swap them. 
           Step 5 − Repeat step 3 & 4 until Heap property holds. 
 

9. HASH TABLES 
• Hash Table is a data structure which stores data in an associative manner. 

• In a hash table, data is stored in an array format, where each data value has its 
own unique index value. Access of data becomes very fast if we know the index of 
the desired data. 

• Insertion and search operations are very fast irrespective of the size of the data. 

• struct DataItem  
{ 
         int data; 
         int key; 
}; 
Hashing 

•  Hash Table uses hash technique to generate an index where an element is to be 
inserted or is to be located from. 

• Hashing is a technique to convert a range of key values into a range of indexes of 
an array.  

• We use modulo operator to get a range of key values. 

• int hashCode(int key) 
{ 
  return key % SIZE; 
} 

• It may happen that the hashing technique is used to create an already used index 

of the array. In such a case, we can search the next empty location in the array by 

looking into the next cell until we find an empty cell. This technique is called linear 

probing. 

 

 



 

 

Basic Operations 

• Search − Searches an element in a hash table. Compute the hash code of the key 
passed and locate the element using that hash code as index in the array. Use 
linear probing to get the element ahead if the element is not found at the 
computed hash code. 

struct DataItem *search(int key) 
 { 
           int hashIndex = hashCode(key);                 //get the hash 

                      while(hashArray[hashIndex] != NULL)       //move in array until an empty 
           { 
                       if(hashArray[hashIndex]->key == key) 
                       return hashArray[hashIndex]; 
                      ++hashIndex;                                                      //go to next cell 
                      hashIndex %= SIZE;                                            //wrap around the table 
           } 

                      return NULL;         
            } 
 

• Insert − inserts an element in a hash table. Compute the hash code of the key 
passed and locate the index using that hash code as an index in the array. Use 
linear probing for empty location, if an element is found at the computed hash 
code. 
void insert(int key,int data) 
 { 
          struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem)); 
          item->data = data;   
          item->key = key;      
          int hashIndex = hashCode(key);                            //get the hash  

                    while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1) 
        //move in array until an empty or deleted cell 

                    { 
                  ++hashIndex;                                                   //go to next cell 
                  hashIndex %= SIZE;                                         //wrap around the table 
         } 
         hashArray[hashIndex] = item;         
 } 



 
• Delete − Deletes an element from a hash table. Compute the hash code of the key 

passed and locate the index using that hash code as an index in the array. Use 
linear probing to get the element ahead if an element is not found at the 
computed hash code. When found, store a dummy item there to keep the 
performance of the hash table intact. 
struct DataItem* delete(struct DataItem* item) 

{ 

           int key = item->key; 

           int hashIndex = hashCode(key);               //get the hash  

           while(hashArray[hashIndex] !=NULL)      //move in array until an empty 

           { 

           if(hashArray[hashIndex]->key == key)  

                   { 

                             struct DataItem* temp = hashArray[hashIndex];  

                             hashArray[hashIndex] = dummyItem;  

                             //assign a dummy item at deleted position 

 

                            return temp; 

                  }   

                 ++hashIndex;                                //go to next cell 

                 hashIndex %= SIZE;                      //wrap around the table  

        }   

        return NULL;       
 

10. SORTING 
• It is the process of arranging data in ascending or descending order 

Time Complexities of Sorting Algorithms: 

 

Algorithm Best Average Worst 

Quick Sort Ω(n log(n)) Θ(n log(n)) O(n^2) 

Bubble Sort Ω(n) Θ(n^2) O(n^2) 

Merge Sort Ω(n log(n)) Θ(n log(n)) O(n 

log(n)) 

Insertion Sort Ω(n) Θ(n^2) O(n^2) 



 

Algorithm Best Average Worst 

Selection Sort Ω(n^2) Θ(n^2) O(n^2) 

 

Types of sorting algorithms 

• Bubble sort: In this technique, after one pass, the largest element is placed in the 

correct location. Every pass is reduced by one check because the largest element, 

once placed correctly, need not be included in the next pass. It requires n-1 passes 

to sort an array of n elements. In each pass, adjacent elements are compared and 

if they are not in order, they are swapped. In the kth pass we have n-k 

comparisons. 
 

 

 

 

 

 

 

• Selection sort: In this technique, we search for the smallest element in each pass 

and swap it with the appropriate position. It requires n-1 passes to sort an array of 

n elements. In the kth pass we have n-k comparisons. Every pass is reduced by one 

check because the smallest element, once placed correctly, need not be included 

in the next pass. 

 

 

 

 

 

 

 

• Merge sort: In this technique, we split the array into n sub-arrays which contain 
one element each and then we repeatedly merge the sub-arrays (using a merge 
function) into larger sub-arrays until only one sorted array remains. It involves 
recursion as the function calls itself.  



 

 

 

 

 

 

• Insertion sort: The first step involves the comparison of the element in question 

with its adjacent element. And if at every comparison reveals that the element in 

question can be inserted at a particular position, then space is created for it by 

shifting the other elements one position to the right and inserting the element at 

the suitable position. The above procedure is repeated until all the element in the 

array is at their apt position. 

 

 

• Quick sort: Select any splitting value, say L. The splitting value is also known 
as Pivot. Divide the array into two. A-L and M-Z. It is not necessary that the sub-
arrays should be equal. The same approach was used for the sub-arrays by using 
the method of recursion. Ultimately, the sub-arrays can be combined to produce a 
fully sorted and ordered array. 

 



11. RECURSION 
• Recursion is the phenomenon of a function  calling itself. 

• A recursive function can go infinite like a loop. To avoid infinite running of a 

recursive function, it has: 

Base criteria − There must be at least one base criteria or condition, such that, 
when this condition is met the function stops calling itself recursively. 
Progressive approach − The recursive calls should progress in such a way that 
each time a recursive call is made it comes closer to the base criteria. 

• A call made to a function is Ο(1), hence the (n) number of times a recursive call is 
made makes the recursive function Ο(n). 
 

 

Implementation 

• Many programming languages implement recursion by means of stacks.  

• Generally, whenever a function (caller) calls another function (callee) or itself as 
callee, the caller function transfers execution control to the callee. This transfer 
process may also involve some data to be passed from the caller to the callee. 

• The caller function has to suspend its execution temporarily and resume later 
when the execution control returns from the callee function. Here, the caller 
function needs to start exactly from the point of execution where it puts itself on 
hold. It also needs the exact same data values it was working on. 

•  For this purpose, an activation record (or stack frame) is created for the caller 
function. This activation record keeps the information about local variables, 
formal parameters, return address and all information passed to the caller 
function. 

 



12. GRAPHING ALGORITHMS 

What is a Graph? 

• A graph consists of a finite set of vertices or nodes and a set of edges connecting 

these vertices. G=(v,e) 

 

Elements of a graph 

• Adjacent vertices: Two vertices connected by an edge 

• Parallel edges: Two edges in opposite direction connecting the same pair of 

adjacent vertices. 

• Order: The number of vertices in the graph 

• Size: The number of edges in the graph 

• Vertex degree: The number of edges incident to a vertex. Indegree is the number 

of edges entering a vertex and outdegree is the number of edges leaving the vertex 

• Isolated vertex: A vertex that is not connected to any other vertices in the graph 

• Self-loop: An edge from a vertex to itself in a directed graph. 

• Articulation point: A vertex which when removed splits the graph into multiple 

parts 

• Path: A set of vertices connecting any two vertices 

• Cycle: A path that starts and ends at the same vertex. 

Types of graphs 

• Directed graph: A graph where all the edges have a direction indicating what is the 

start vertex and what is the end vertex. Also called a digraph. 

• Undirected graph: A graph with edges that have no direction. Also called a graph. 

The edges are counted as going both ways. 

• Weighted graph: Edges of the graph have weights 

• Unweighted graph: Edges of the graph have no weights 



• Simple Digraph: No self-loop or parallel edges 

• Non connected graph: Has more than one unconnected components. 

• Connected graph: Has more than one components which are all connected. 

• Strongly connected graph: Directed graph in which from every vertex you can 

reach all other vertices. 

• Directed acyclic graph: Directed graph without cycles. 

 

Representation of graphs 

• Adjacency matrix: Take a v*v matrix and between any two vertices, where there is 

an edge, fill 1 in the matrix else zero. The columns give the indegree and rows give 

the outdegree. 

• Cost adjacency matrix: Instead of 1, fill with weights of edges. 

• Adjacency list: It is an array of linked lists. It is of size v. Each linked list shows the 

edges connected to that vertex. For directed graphs only see edges going out. 

Normal adjacency list gives the outdegree and inverse adjacency list gives the 

indegree. 

• Cost adjacency list: Store the weight of each edge too. 

 



• Compact list: Take an array of v+2e+2 size. Leave the first spot blank and then fill 

the index number from which the edges of a particular vertex start. Then, starting 

from that index, fill the connected vertices of that particular vertex. Use a 2d array 

for weighted graphs. Normal compact list gives the outdegree and inverse compact 

list gives the indegree. 

Graphing algorithms 
a) Searching 

1) Depth first search:  2) Breadth first search:  

• Form a tree of the given graph by 
starting from one vertex and keep 
moving forward. When you reach 
the end, backtrack and reexplore.  

• Make a dotted edge (back edge) 
wherever a vertex is repeated. 

• We start from a particular vertex and 
explore as far as possible along each 
branch before retracing back 
(backtracking). 

•  Unlike trees, graphs can contain 
cycles (a path where the first and last 
vertices are the same). Hence, we 
have to keep track of the visited 
vertices. 

• When implementing DFS, we use a 
stack data structure to support 
backtracking. 

• Analytical time: O(n) 

• Form a tree of the given graph by 
starting from one vertex and putting 
all its adjacent vertices at the same 
level. Keep moving forward.  

• Make a dotted edge (cross edge) 
wherever a vertex is repeated. 

• We start at a particular vertex and 
explore all of its neighbours at the 
present depth before moving on to 
the vertices in the next level.  

• Unlike trees, graphs can contain 
cycles (a path where the first and last 
vertices are the same). Hence, we 
have to keep track of the visited 
vertices. 

•  When implementing Breadth first 
search, we use a queue data 
structure. 

• Analytical time: O(n) 

 
 



b) Minimum spanning tree 

A spanning tree is a subgraph of a graph that has all vertices of a graph and v-1 

edges so that there is no cycle and all vertices are connected. 

A minimum spanning tree is a spanning tree with the minimum sum of edge 

weights. 

Number of spanning trees is e!/(v-1)!(e-v+1)! – no. of cycles 

1) Prim’s algorithm: 2) Kruskal’s algorithm: 

• Select the least cost edge. Select 
the next minimum cost edge that 
is connected to already selected 
vertices. Keep going till all 
vertices are covered. 

• Time: O(n^2) 

• More focus on finding a tree than 
minimizing it 

• It can find spanning tree for only 
one component of a non 
connected graph. 

• Keep selecting the edges in 
increasing order of their cost, but 
make sure the do not form a cycle. 
 
 

• Time: O(n^2) 

• More focus on minimizing than 
finding a tree 

• It can find spanning tree for each 
component of a non connected 
graph. 

 

 
 

c) Maximum flow 

We can model a graph as a flow network with edge weights as flow capacities. 

In the maximum flow problem, we have to find a flow path that can obtain the 

maximum possible flow rate. 

1) Ford-Fulkerson algorithm 

2) Edmonds–Karp algorithm 

3) Dinic’s algorithm 

 



 

d) Graph colouring 

Graph colouring assigns colours to elements of a graph while ensuring certain 

conditions.  

The minimum number of colors required for graph ‘G’ is called as the chromatic 

number of G, denoted by X(G). 

1) Vertex colouring 
 

2) Edge colouring 
 

2) Face colouring 
 

Assignment of labels, 
called colors, to the 
vertices of a graph such 
that no two adjacent 
vertices share the same 
color.  
Two vertices are said to be 
adjacent if they have a 
common edge 

 
 

Each edge of a graph has 
a color assigned to it in 
such a way that no two 
adjacent edges are the 
same color. 
 
Two edges are said to be 
adjacent if they have a 
common vertex 

 

Region coloring is an 
assignment of colors to 
the regions of a planar 
graph such that no two 
adjacent regions have the 
same color.  
Two regions are said to 
be adjacent if they have a 
common edge 

 

e) Matching 

A matching in a graph is a set of edges that does not have common vertices (i.e., 

no two edges share a common vertex).  

A matching is called a maximum matching if it contains the largest possible number 

of edges matching as many vertices as possible. 

1) Hopcroft-Karp algorithm 

2) Hungarian algorithm 

3) Blossom algorithm 

 
 

https://brilliant.org/wiki/graphs/


 

f) Shortest path: 

The shortest path from one vertex to another vertex is a path in the graph such 

that the sum of the weights of the edges that should be travelled is minimum. 

1) Dijkstra’s algorithm: 2) Bellman Ford’s 
algorithm: 

• Choose a starting vertex.  

• Mark the values of direct 
paths. 

• Mark other vertices as 
infinity. 

• Use relaxation, which means 
if distance of vertex u + cost 
of edge (u, v) < the marked 
distance of vertex v, replace 
the marked distance by the 
distance of vertex v+ cost of 
edge (u, v).  

• Thus, keep moving ahead and 
relax all vertices. 

• Thus you get the shortest 
distance to each vertex 

• Worst case time depends on 
n^2 

• Drawback: may not work on 
negative edges 

• Make a list of all edges. 

• Use relaxation, which 
means if distance of vertex 
u + cost of edge (u, v) < the 
marked distance of vertex v, 
replace the marked distance 
by the distance of vertex v+ 
cost of edge (u, v).  

• Keep moving ahead and 
relax all vertices. 

• Relax each edge v-1 times. 
(repeat entire process) 

• Thus you get the shortest 
distance to each vertex 

• Worst case time depends on 
n^3 

• Drawback: may not work if 
the total weight of a cycle is 
negative 

 

 
 

 



 

 

g) Cycle detection 

A cycle is a path in a graph where the first and last vertices are the same.  

If we start from one vertex, travel along a path and end up at the starting vertex, 

then this path is a cycle.  

Cycle detection is the process of detecting these cycles 

1) Floyd’s cycle detection 
algorithm 

2) Brent’s algorithm 

• Also known as the tortoise 

and the hare problem, you 

take two pointers and in 

each iteration, make one 

move one step and the other 

move two steps. 

• In some iteration, they both 

will point to the same node if 

it is a cycle. 

• It does not give us the length 

of the cycle, we have to find 

that separately.  

• Move fast pointer (or 
second_pointer) in powers of 
2 until we find a loop.  

• After every power, we reset 
slow pointer (or first_pointer) 
to previous value of second 
pointer. 

• Reset length to 0 after every 
every power. 

• The condition for loop testing 
is first_pointer and 
second_pointer become 
same. And loop is not present 
if second_pointer becomes 
NULL. 

• When we come out of loop, 
we have length of loop. 

• We reset first_pointer to head 
and second_pointer to node 
at position head + length. 

• Now we move both pointers 
one by one to find beginning 
of loop. 

 

 

 

 

 



 

h) Strongly connected components 

A graph is said to be strongly connected if every vertex in the graph is reachable 

from every other vertex. 

If you make every strongly connected component one vertex, you get a directed 

acyclic graph. 

1) Kosaraju’s algorithm 2) Tarjan’s strongly connected 
components algorithm 

• Start from one vertex, as soon as 
u visit a vertex, add it in the set 
of visited vertices. 

• Explore its children. 

• Once all children of a vertex are 
explored, add it in a stack of 
finished vertices. 

• If all children are explored 
backtrack and reexplore. 

• Then move to new starting 
points. 

• After the stack is filled, reverse 
the graph. 

• Take out vertices from the stack 
and as u explore, add them to a 
set of strongly connected 
vertices until you cannot do so 
anymore. 

• Find all such strongly connected 
components. 

• The low link id of a node is the 
smallest(lowest) node id 
reachable from the node while 
doing a dfs (Including itself) 

• Mark the ids of each node as 
unvisited 

• Start DFS. Upon visiting a node, 
assign it an id and a low link 
value. Also mark current nodes as 
visited and add them to a seen 
stack. 

• On DFS callback, if the previous 
node is on the stack then min the 
current node’s low-link value 
with the last node’s low link 
value. 

• After visiting all neighbours, if the 
current node started a connected 
component then pop nodes off 
stack until current node is 
reached. 

 

 



i) Topological sorting 

Topological sorting of a directed acyclic graph is a linear ordering of its vertices so 

that for each directed edge (u, v) in the ordering, vertex u comes before v. 

1) Kahn’s algorithm 2) Algorithm based on DFS 

• Choose vertices in the same order as 
the eventual topological sort.[2] First, 
find a list of "start nodes" which have 
no incoming edges and insert them 
into a set S; at least one such node 
must exist in a non-empty acyclic 
graph. 

 

• L ← Empty list that will contain the 
sorted elements 
S ← Set of all nodes with no incoming 
edge 
while S is not empty do 
    remove a node n from S 
    add n to L 
    for each node m with an edge e 
from n to m do 
        remove edge e from the graph 
        if m has no other incoming edges 
then 
            insert m into S 
if graph has edges then 
    return error   (graph has at least one 
cycle) 
else  
    return L   (a topologically sorted 
order) 

• The algorithm loops through each 
node of the graph, in an arbitrary 
order, initiating a depth-first search 
that terminates when it hits any 
node that has already been visited 
since the beginning of the 
topological sort or the node has no 
outgoing edges (i.e. a leaf node): 

•  L ← Empty list that will contain the 
sorted nodes 
while exists nodes without a 
permanent mark do 
    select an unmarked node n 
    visit(n) 
function visit(node n) 
    if n has a permanent mark then 
        return 
    if n has a temporary mark then 
        stop   (not a DAG) 
    mark n with a temporary mark 
    for each node m with an edge 
from n to m do 
        visit(m) 
    remove temporary mark from n 
    mark n with a permanent mark 
    add n to head of L 

 

https://en.wikipedia.org/wiki/Topological_sorting#cite_note-Kahn-2


 

13. NUMERICAL ALGORITHMS  
a) Kasturbha multiplication 

 

 

 
b) Euclid’s algorithm for gcd 

• If d divides both m and n, d divides m-n too.(m>n).  

• m=ad n=bd m-n=(a-b)d 

• So gcd of m,n = gcd of m-n, n 

• Let m,n>0 be positive integers. If n divides m, then gcd(m,n)=n. Otherwise 

gcd(m,n)=gcd(m%n,n). 

 

 

 

 



c) Newton’s method 

 
• It is a method to find the root of f(x), i.e. x s.t. f(x)=0 

• Method works if f(x) and derivative f'(x) can be easily calculated and a good 

initial guess x0 for the root is available  

• Point A (xi,0) is known. Calculate f(xi ).Point B=(xi,f(xi)).Draw the tangent to f(x). 

Point C= intercept on x axis. Point C=(xi+1,0) 

• f'(xi) = derivative= (d f(x))/dx at xi =AB/AC 

• xi+1= xi – AC = xi - AB/(AB/AC) = xi- f(xi) / f'(xi) 

• Starting with x0 assumed, we compute x1, then x2, ...We can get as close to f(y) 

as required 

d) Taylor/Mclaurin series 

• When x is close to x1: 

f(x) = f(x1) + f'(x1)(x-x1) + f''(x1)(x-x1)^2 / 2! + f'''(x1)(x-x1)^3 / 3! + ... 

• When x is close to 0: 

f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ... 

• Now we can write a program for different functions using this formula. 

• Loop control variable will be k 

•  In each iteration we calculate tk from tk-1 

• The term tk is added to sum 

• A variable term will keep track of tk. 

• At the beginning of kth iteration, term will have the value tk-1, and at the end of 

kth iteration it will have the value tk 

• After kth iteration, sum will have the value = sum of the first k terms of the 

Taylor series 

• Initialize sum = x, term = x 

• In the first iteration of the loop we calculate the sum of 2 terms. So initialize k=2 

• We stop the loop when term becomes small enough 

 



e) Bisection method 

 
• It is a method to find root of function f: Value x such that f(x)=0 

• Requirement: Need to be able to evaluate f, f must be continuous, we must be 

given points xL and xR such that f(xL) and f(xR) are not both positive or both 

Negative 

• Because of continuity, there must be a root between xL and xR (both inclusive) 

• Let xM = (xL + xR)/2 = midpoint of interval (xL , xR) 

•  If f(xM) has same sign as f(xL), then f(xM), f(xR) have different signs. So we can 

set xL = xM and repeat. Similarly if f(xM) has same sign as f(xR) 

• In each iteration, xL, xR are coming closer. 

• When they come closer than certain epsilon, we can declare xL as the root. 

f) Integration 

 

 

 

 

 

 

• Integral from p to q = area under curve  

• Approximate area by rectangles 

• Read in p, q (assume p < q) 

•  Read in n = number of rectangles 

• Calculate w = width of rectangle = (q-p)/n 

• ith rectangle, i=0,1,...,n-1 begins at p+iw 

• Height of ith rectangle = f(p+iw) 

• Given the code for f, we can calculate height and width of each rectangle and so 

we can add up the areas 
 



14. DYNAMIC PROGRAMMING  
• Dynamic Programming (DP) is an algorithmic technique for solving an optimization 

problem by breaking it down into simpler subproblems and utilizing the fact that 

the optimal solution to the overall problem depends upon the optimal solution to 

its subproblems. 

        Characteristics of Dynamic Programming 
1. Overlapping Subproblems  

Subproblems are smaller versions of the original problem. Any problem has 
overlapping sub-problems if finding its solution involves solving the same 
subproblem multiple times. 

2. Optimal Substructure Property  
Any problem has optimal substructure property if its overall optimal solution can 
be constructed from the optimal solutions of its subproblems.  

         Dynamic Programming Methods 
1.  Top-down with Memoization  

In this approach, we try to solve the bigger problem by recursively finding the 
solution to smaller sub-problems.  
Whenever we solve a sub-problem, we cache its result so that we don’t end up 
solving it repeatedly if it’s called multiple times. Instead, we can just return the 
saved result.  
This technique of storing the results of already solved subproblems is 
called Memoization 

2. Bottom-up with Tabulation  

Tabulation is the opposite of the top-down approach and avoids recursion. 

In this approach, we solve the problem “bottom-up” (i.e. by solving all the 

related sub-problems first). This is typically done by filling up an n-dimensional 

table.  

Based on the results in the table, the solution to the top/original problem is then 

computed. 

         Types of dynamic programming problems 
1. Optimization problems. 

The optimization problems expect you to select a feasible solution, so that the 
value of the required function is minimized or maximized. 

2. Combinatorial problems. 
Combinatorial problems expect you to figure out the number of ways to do 
something, or the probability of some event happening. 

 



 
Every Dynamic Programming problem has a schema to be followed: 

• Show that the problem can be broken down into optimal sub-problems. 
• Recursively define the value of the solution by expressing it in terms of optimal 

solutions for smaller sub-problems. 
• Compute the value of the optimal solution in bottom-up fashion. 
• Construct an optimal solution from the computed information. 

Eg. Fibonacci numbers 
Fibonacci (n) = 1; if n = 0 
Fibonacci (n) = 1; if n = 1 
Fibonacci (n) = Fibonacci(n-1) + Fibonacci(n-2) 
So, the first few numbers in this series will be: 1, 1, 2, 3, 5, 8, 13, 21... and so on! 
A code for it using pure recursion: 
int fib (int n) { 

              if (n < 2) 
              return 1; 
              return fib(n-1) + fib(n-2); 
         } 
         Using Dynamic Programming approach with memoization: 

void fib () { 
               fibresult[0] = 1; 
               fibresult[1] = 1; 
               for (int i = 2; i<n; i++) 
                    fibresult[i] = fibresult[i-1] + fibresult[i-2]; 
           } 

In the recursive code, a lot of values are being recalculated multiple times. We 
could do good with calculating each unique quantity only once. 

  
 
 



Eg. Tower of Hanoi 
The Tower of Hanoi  is a mathematical game or puzzle. It consists of three rods, 
and a number of disks of different sizes which can slide onto any rod. The puzzle 
starts with the disks in a neat stack in ascending order of size on one rod, the 
smallest at the top, thus making a conical shape. 
The objective of the puzzle is to move the entire stack to another rod, obeying the 
following rules: 
• Only one disk may be moved at a time. 
• Each move consists of taking the upper disk from one of the rods and sliding it 

onto another rod, on top of the other disks that may already be present on 
that rod. 

• No disk may be placed on top of a smaller disk. 
The dynamic programming solution consists of solving the functional equation 
S(n,h,t) = S(n-1,h, not(h,t)) ; S(1,h,t) ; S(n-1,not(h,t),t) 

Where n denotes the number of disks to be moved, h denotes the home rod, t 

denotes the target rod, not(h,t) denotes the third rod (neither h nor t), ";" denotes 

concatenation, and S(n, h, t) := solution to a problem consisting of n disks that are 

to be moved from rod h to rod t. 

For n=1 the problem is trivial, namely S(1,h,t) = "move a disk from rod h to rod t" 
(there is only one disk left). 
The number of moves required by this solution is 2n − 1.  

 
 
 

 

 

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Mathematical_game
https://en.wikipedia.org/wiki/Puzzle
https://en.wikipedia.org/wiki/Bellman_equation

