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1 Student Details

• Name = Amruta Mahendra Parulekar
• Roll no. = 20d070009
• Filter number m = 26
• Group number = 3
• Review member = Sameep Chattopadhyay, 20d070067 (Has reviewed my report)

2 Bandpass FIR filter Design

2.1 Un-normalized discrete time filter specifications

The filter to be designed is a Band-pass filter where:

q(m) = ⌊m/10⌋ = ⌊2.6⌋ = 2 (1)

r(m) = 26− 10 ∗ q(m) = 26− 10 ∗ 2 = 6 (2)

BL(m) = 10 + 5 ∗ q(m) + 13 ∗ r(m) = 10 + 5 ∗ 2 + 13 ∗ 6 = 98 (3)

BH(m) = BL(m) + 75 = 98 + 75 = 173 (4)

1. The passband will be from 98 kHz to 173 kHz

2. The transition band will be 5 kHz on either side of the passband

3. The stopband will be from 0 - 93 kHz and 178 - 300kHz ( sampling rate 600 kHz)

4. The passband and stopband tolerances are 0.15 in magnitude

2.2 Normalized discrete time filter specifications

Sampling rate is 600 kHz, which corresponds to 2π on the normalized frequency axis.
So on normalizing the frequency axis, each frequency Ω1 below 300 kHz gets mapped using the
function:

ω =
Ω1 ∗ 2π

(SamplingRate)
(5)

1. The passband will be from 0.3267 π to 0.5767 π

2. The transition band will be 0.017 π on either side of the passband

3. The stopband will be from 0 π - 0.31 π and 0.593 π- π

4. The passband and stopband tolerances are 0.15 in magnitude
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2.3 FIR Filter Transfer function using Kaiser Window

2.3.1 Window shape and size calculation

The tolerance in both stopband and passband is given to be 0.15. Therefore, δ=0.15 and we
get the minimum stopband attenuation to be:

A = −20log(0.15) = 16.4782dB (6)

Since A < 21, we get β to be 0.
Since α = Nβ, α will also be 0.
Here, α and β are shape parameters of the Kaiser window.
Now to estimate the window length required, we use the empirical formula for the lower bound
on the window length

2N + 1 ≥ 1 +
A− 8

2.285 ∗∆ωT

(7)

Here ∆ωT is the minimum transition width. In our case, the transition width is the same on
either side of the passband.

∆ωT =
2π

fs
∗ 5kHz =

π

60
= 0.05236 (8)

On substituting in (6) and (8) in (7), we get

N ≥ 36 (9)

The above equation gives a loose bound on the window length when the tolerance is not very
stringent. On successive trials in MATLAB,it was found that a window length of 88 is sufficient
to satisfy the required constraints.
On increasing N further to 101, we can see that the filter satisfies the conditions even better,
but as N increases, our filter needs more delay stages and will become more resource intensive,
so we prefer the smallest possible N.
Also, since β is 0, the window is a rectangular window.

2.3.2 Time Domain Coefficients

In order to find the time domain coefficients, first the ideal impulse response samples for the
same length as that of the window are generated. Then, the Kaiser Window is generated using
the MATLAB function and applied on the ideal impulse response samples. For generating
the ideal impulse response a separate function was made to generate the impulse response of
Low-Pass filter. It took the cutoff value and the number of samples as input argument. The
band pass impulse response samples are then generated as the difference between two low-pass
filters.
The 88 coefficients are noted as follows:
FIRBandPass =

Columns 1 through 10
-0.0038 0.0107 0.0105 -0.0091 -0.0104 0.0023 -0.0002 0.0004 0.0134 0.0044
Columns 11 through 20
-0.0174 -0.0089 0.0089 0.0032 0.0025 0.0122 -0.0051 -0.0238 -0.0012 0.0188
Columns 21 through 30
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0.0038 0.0001 0.0075 -0.0160 -0.0255 0.0151 0.0300 -0.0034 -0.0084 0.0014
Columns 31 through 40
-0.0266 -0.0194 0.0452 0.0397 -0.0304 -0.0265 -0.0001 -0.0392 0.0044 0.1339
Columns 41 through 50
0.0453 -0.2026 -0.1319 0.2007 0.2007 -0.1319 -0.2026 0.0453 0.1339 0.0044
Columns 51 through 60
-0.0392 -0.0001 -0.0265 -0.0304 0.0397 0.0452 -0.0194 -0.0266 0.0014 -0.0084
Columns 61 through 70
-0.0034 0.0300 0.0151 -0.0255 -0.0160 0.0075 0.0001 0.0038 0.0188 -0.0012
Columns 71 through 80
-0.0238 -0.0051 0.0122 0.0025 0.0032 0.0089 -0.0089 -0.0174 0.0044 0.0134
Columns 81 through 88
0.0004 -0.0002 0.0023 -0.0104 -0.0091 0.0105 0.0107 -0.0038

Thus We have realized a bandpass filter in terms of finite impulses. In case of FIR, the number
of impulses are 88. Thus, we will have terms from 1 to z−87. This filter is definitely stable
and causal. As we have shifted the impulses, we expect to get a linear phase response in the
pass-band region.

2.3.3 Impulse response plot

2.4 Comparison between FIR and IIR realizations

2.4.1 Magnitude and phase vs Normalized Frequency plots

A] FIR Realization
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B] IIR Realization

2.4.2 Magnitude vs Un-normalized Frequency plots

A] FIR Realization

On increasing N further to 101, we can see that the filter satisfies the conditions even better,
but as N increases, our filter needs more delay stages and will become more resource intensive,
so we prefer the smallest possible N.
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B] IIR Realization

2.4.3 Comparisons

• In both realizations, the specifications are satisfied and we can observe fs1,fs2,fp1 & fp2.

• The Butterworth filter has a monotonic passband and a monotonic stopband while the
FIR filter has ripples in both its passband and stopband.

• The FIR filter phase response is linear, while the Butterworth filter phase response was
slightly non-linear.

• The Butterworth filter had an order of 38 in both the numerator and denominator, thus
requiring around 76 delay stages. For the FIR filter, we need terms till z−87 (87 delays)
, or for even better condition satisfaction, we need terms till z−100 (100 delays), thus it
has a higher resource demand than the IIR filter.

• For FIR filter, we need to adjust the value of N to meet our design specifications, whereas
no such tuning is required in IIR case, which is a disadvantage of FIR filters

2.5 Code

A] Ideal Lowpass Function
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B] Bandpass Function

3 Bandstop FIR filter Design

3.1 Un-normalized discrete time filter specifications

The filter to be designed is a Band-stop filter where:

q(m) = ⌊m/10⌋ = ⌊2.6⌋ = 2 (10)

r(m) = 26− 10 ∗ q(m) = 26− 10 ∗ 2 = 6 (11)

BL(m) = 20 + 3 ∗ q(m) + 11 ∗ r(m) = 20 + 3 ∗ 2 + 11 ∗ 6 = 92 (12)

BH(m) = BL(m) + 40 = 92 + 40 = 132 (13)

1. The stopband will be from 92 kHz to 132 kHz

2. The transition band will be 5 kHz on either side of the stopband

3. The passband is from 0 - 87 kHz and 137 - 212.5kHz ( sampling rate 425 kHz)

4. The passband and stopband tolerances are 0.15 in magnitude
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3.2 Normalized discrete time filter specifications

Sampling rate is 425 kHz, which corresponds to 2π on the normalized frequency axis.
So on normalizing the frequency axis, each frequency Ω1 below 212.5 kHz gets mapped using
the function:

ω =
Ω1 ∗ 2π

(SamplingRate)
(14)

1. The stopband will be from 0.4329 π to 0.6212 π

2. The transition band will be 0.0235 π on either side of the stopband

3. The passband will be from 0 - 0.4094 π and 0.6447 π - π

4. The passband and stopband tolerances are 0.15 in magnitude

3.3 FIR Filter Transfer function using Kaiser Window

3.3.1 Window shape and size calculation

The tolerance in both stopband and passband is given to be 0.15. Therefore, δ=0.15 and we
get the minimum stopband attenuation to be:

A = −20log(0.15) = 16.4782dB (15)

Since A < 21, we get β to be 0.
Since α = Nβ, α will also be 0.
Here, α and β are shape parameters of the Kaiser window.
Now to estimate the window length required, we use the empirical formula for the lower bound
on the window length

2N + 1 ≥ 1 +
A− 8

2.285 ∗∆ωT

(16)

Here ∆ωT is the minimum transition width. In our case, the transition width is the same on
either side of the passband.

∆ωT =
2π

fs
∗ 5kHz =

π

42.5
= 0.07392 (17)

On substituting (15) and (17) in (16), we get

N ≥ 26 (18)

The above equation gives a loose bound on the window length when the tolerance is not very
stringent. On successive trials in MATLAB,it was found that a window length of 65 is sufficient
to satisfy the required constraints.
On increasing N further to 71, we can see that the filter satisfies the conditions even better,
but as N increases, our filter needs more delay stages and will become more resource intensive,
so we prefer the smallest possible N.
Also, since β is 0, the window is a rectangular window.

9



3.3.2 Time Domain Coefficients

In order to find the time domain coefficients, first the ideal impulse response samples for the
same length as that of the window are generated. The Kaiser Window was generated using
the MATLAB function and applied on the ideal impulse response samples. For generating
the ideal impulse response a separate function was made to generate the impulse response of
Low-Pass filter. It took the cutoff value and the number of samples as input argument. The
band-stop impulse response samples were generated as the difference between three low-pass
filters ( allpass - bandpass ).

The 65 coefficients are noted as follows:
FIRBandStop =

Columns 1 through 10
-0.0171 0.0077 0.0093 -0.0030 0.0018 -0.0076 -0.0102 0.0194 0.0119 -0.0251
Columns 11 through 20
-0.0073 0.0192 0.0015 -0.0013 -0.0004 -0.0218 0.0068 0.0390 -0.0169 -0.0405
Columns 21 through 30
0.0209 0.0231 -0.0077 0.0072 -0.0286 -0.0370 0.0844 0.0523 -0.1457 -0.0450
Columns 31 through 40
0.1937 0.0176 0.7882 0.0176 0.1937 -0.0450 -0.1457 0.0523 0.0844 -0.0370
Columns 41 through 50
-0.0286 0.0072 -0.0077 0.0231 0.0209 -0.0405 -0.0169 0.0390 0.0068 -0.0218
Columns 51 through 60
-0.0004 -0.0013 0.0015 0.0192 -0.0073 -0.0251 0.0119 0.0194 -0.0102 -0.0076
Columns 61 through 65
0.0018 -0.0030 0.0093 0.0077 -0.0171

We have realized a band-stop filter in terms of both infinite and finite impulses. In FIR case,
the number of impulses are 65. Hence for the transfer function, we will have terms from 1 to
z64 .The filter is stable as all poles lie within the unit cycle and causal. As we have shifted the
impulses, we expect to get a linear phase response in the stop-band region

3.3.3 Impulse response plot
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3.4 Comparison between FIR and IIR realizations

3.4.1 Magnitude and phase vs Normalized Frequency plots

A] FIR Realization

B] IIR Realization

3.4.2 Magnitude vs Un-normalized Frequency plots

A] FIR Realization

On increasing N further to 71, we can see that the filter satisfies the conditions even better,
but as N increases, our filter needs more delay stages and will become more resource intensive,
so we prefer the smallest possible N.
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B] IIR Realization

3.4.3 Comparisons

• In both realizations, the specifications are satisfied and we can observe fs1,fs2,fp1 & fp2.

• The Chebyshev filter has a equiripple passband and a monotonic stopband while the FIR
filter has ripples in both its passband and stopband.

• The FIR filter phase response is linear, while the Chebyshev filter phase response was
non-linear.

• The Chebyshev filter had an order of 10 in both the numerator and denominator, thus
requiring around 18 delay stages. For the FIR filter, we need terms till z−64 (64 delays) ,
or for even better condition satisfaction, we need terms till z−70 (70 delays), thus it has
a higher resource demand than the IIR filter.

• For FIR filter, we need to adjust the value of N to meet our design specifications, whereas
no such tuning is required in IIR case, which is a disadvantage of FIR filters
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3.5 Code

A] Ideal Lowpass Function

B] Bandstop Function

4 Peer Review

I have reviewed the report of Harshvardhan (20d070035) and have found it to be
correct He has mentioned filter specifications as was done in the previous assignment. H got
Nmins of 72 and 52 in his two filters. He has provided the impulse response graphs(stem plots)
and he has also given the final magnitude and phase plots as asked. He found the optimum N
by trial and error and according to his graphs, the specifications are met. Code has also been
added. The comparison between FIR and butterworth and chebyshev is present too.
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