Pathogen-X: A Cross-modal Genomic Feature Trans-align
Network for Enhanced Survival Prediction from
Histopathology Images
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INTRODUCTION METHODOLOGY

Genomic data is a powerful predictor for survival than pathology data
but it is costly and inaccessible

Cross Modal genomic feature translation and alignment network uses
histopathology image for enhanced survival prediction

It enhances the weaker imaging signals with stronger genomic signals

Survival prediction
Network

Genomic feature
projection Network

Cross Modal Alignment
and Translation

e Latent Loss (L(l)) -
Aligns pathology and
genomic latent
embeddings

e Translation Loss (L(t))
- Aligns genomic
encoder and decoder
embeddings

e Uses a multi-layer
perceptron on P(l) to
predict cancer
survival risk

e Cox Loss — Optimizes
survival prediction

e Maps genomic data
to latent
representation
G(l) aligned with
pathology latent
embeddings P(l)

PATHOGEN-X

= [VlOdality

* Training — histopathology and genomic data
e Testing — histopathology data

s Cross Modality translator

e Translates image features to genomic compatible latent
space(P(l)) and back to image compatible latent space

e Transformer-based pathology encoder and genomic
decoder

CROSS MODAL TRANSLATOR : PATHOLOGY TO GENOMICS
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Compared with Mean-
MIL, Max-MIL, Attn-
MIL, Trans-MIL, SimL,

genomic survival
models

Effect of latent and
translation loss
analyzed

Survival analysis of high SURVIVAL PREDICTION NETWORK

vs. low-risk groups

GENOMIC PROJECTION NETWORK

The cross-modal genomic feature trans-align network (PathoGen-X) features four main components: a
pathology encoder, a genomic decoder, a genomic projection matrix (PM) and a survival prediction module.

RESULTS
Genomic o High Jict b o Train Test  Methods BRCA LUAD GBM Mean
oredictive power : IBNET Predictive power than pathology G G  Neural-Cox 067 +£0088 063+0019 086+0036 0.72
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correlation : alignment

The Kaplan-Meier curves of our model on the three datasets. We used median risk to stratify patients
Into low and high-risk groups.

e High vs low risk group show significant
survival gap (p<0.01)

Risk stratification :

Alignment Loss BRCA
L 0.64 Ablation study analyzing the impact of different alignment loss variations
Loss contribution : B The latent and translation loss together Ly 0.65 | onthe TCGA-BRCA dataset
' led to more improvement Ly + Ly 0.67
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Survival prediction results (cross-validated on four-folds) on TCGA-BRCA, TCGA-LUAD, and TCGA-GBM datasets evaluated using C-index. The
"Train" and "Test" columns indicate the modality used for training and testing, where

data. The best test results achieved using only imaging data are shown in bold.

represents pathology images and "G" denotes genomic
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Data Sample Index

Visualization of the substantial improvement in correlation
between the image features with genomic features with feature
translation for GBM dataset samples
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